Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(43): 37981-37990, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29022346

ABSTRACT

Solid-state fluorescent carbon quantum dots (QDs) can be used for the encryption of security information. Controlling the dispersion and aggregation of the QDs is crucial for switching their solid-state fluorescence "on" and "off." The use of polymers has been proposed to slightly separate the QDs inside aggregates to trigger their fluorescence. However, the complex interactions between the QDs and flexible polymer chains make this process challenging. Here, fluorine-modified carbon nanodots (FCDs) were used in a solution as the printing ink. After printing, the FCDs were aggregated on paper via hydrogen bonds, thereby quenching the fluorescence. After a poly(ethylene glycol) (PEG) treatment, the FCDs exhibited yellow solid-state fluorescence due to an increased interdot spacing. The fluorescence intensity and emission wavelength could be tuned by varying the molecular weight and quantity of PEG used. Finally, we demonstrated a high-resolution encryption and decryption system based on the PEG-triggered fluorescence of FCDs.

2.
ACS Appl Mater Interfaces ; 9(4): 4066-4073, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28079357

ABSTRACT

Multistimuli-responsive polymers are materials of emerging interest but synthetically challenging. In this work, supramolecular assembly was employed as a facile and effective approach for constructing 3,3',5,5'-azobenzenetetracarboxylic acid (H4abtc)/poly(diallyldimethylammonium chloride) (PDAC) supramolecules. Structural transformations of H4abtc can be induced by light, mechanical force, and heat and influenced by free volume. Thus, the fabricated free-standing H4abtc/PDAC film underwent bending/unbending movements upon treatment with light, humidity, or temperature, as asymmetric structural transformations on either side of the film generated asymmetric contraction/stretching forces. Fast rates of shape recovery were achieved for the film on exposure to gently flowing humid nitrogen. The bending/unbending motions are controllable, reversible, and repeatable. Hence, this light-, humido-, and thermo-responsive film has great potential in device applications for advanced functions.

3.
ChemSusChem ; 10(7): 1395-1404, 2017 04 10.
Article in English | MEDLINE | ID: mdl-27943638

ABSTRACT

A closed-cycle system for light-harvesting, storage, and heat release is important for utilizing and managing renewable energy. However, combining a high-energy, stable photochromic material with a controllable trigger for solid-state heat release remains a great challenge for developing photothermal fuels (PTFs). This paper presents a uniform PTF film fabricated by the assembly of close-packed bisazobenzene (bisAzo) grafted onto reduced graphene oxide (rGO). The assembled rGO-bisAzo template exhibited a high energy density of 131 Wh kg-1 and a long half-life of 37 days owing to inter- or intramolecular H-bonding and steric hindrance. The rGO-bisAzo PTF film released and accumulated heat to realize a maximum temperature difference (DT) of 15 °C and a DT of over 10 °C for 30 min when the temperature difference of the environment was greater than100 °C. Controlling heat release in the solid-state assembly paves the way to develop highly efficient and high-energy PTFs for a multitude of applications.


Subject(s)
Azo Compounds/chemistry , Benzene/chemistry , Graphite/chemistry , Hot Temperature , Oxides/chemistry , Photochemical Processes , Isomerism , Models, Molecular , Molecular Conformation
4.
ACS Appl Mater Interfaces ; 8(29): 19004-11, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27381011

ABSTRACT

The large-scale synthesis of atomically thin, layered MoS2/graphene heterostructures is of great interest in optoelectronic devices because of their unique properties. Herein, we present a scalable synthesis method to prepare centimeter-scale, continuous, and uniform films of bilayer MoS2 using low-pressure chemical vapor deposition. This growth process was utilized to assemble a heterostructure by growing large-scale uniform films of bilayer MoS2 on graphene (G-MoS2/graphene). Atomic force microscopy, Raman spectra, and transmission electron microscopy characterization demonstrated that the large-scale bilayer MoS2 film on graphene exhibited good thickness uniformity and a polycrystalline nature. A centimeter-scale phototransistor prepared using the G-MoS2/graphene heterostructure exhibited a high responsivity of 32 mA/W with good cycling stability; this value is 1 order of magnitude higher than that of transferred MoS2 on graphene (2.5 mA/W). This feature results from efficient charge transfer at the interface enabled by intimate contact between the grown bilayer MoS2 (G-MoS2) and graphene. The ability to integrate multilayer materials into atomically thin heterostructures paves the way for fabricating multifunctional devices by controlling their layer structure.

5.
Nanoscale ; 7(39): 16214-21, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26289389

ABSTRACT

An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

6.
Nanoscale ; 6(21): 13043-52, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25247467

ABSTRACT

Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents.

7.
Sci Rep ; 4: 3777, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24445285

ABSTRACT

A layered nanostructure of a lead sulfide (PbS) quantum dot (QD)/multi-walled carbon nanotube (MWNT) hybrid was prepared by the electrostatic assembly after the phase transfer of PbS QDs from an organic to an aqueous phase. Well-crystallized PbS QDs with a narrow diameter (5.5 nm) was mono-dispersed on the sidewalls of MWNT by the electrostatic adsorption. Near-infrared absorption of PbS/MWNT nanostructures was improved and controlled by the packing density of PbS QDs. Efficient charge transfer between PbS and MWNT at the interface resulted in a remarkable quenching of photoluminescence up to 28.6% and a blue-shift of emission band by 300 nm. This feature was facilitated by band energy levels based on the intimate contact through the electrostatic interaction. Two-terminal devices using PbS/MWNT nanostructures showed an excellent on/off switching photocurrent and good stability during 20 cycles under light illumination due to electron transfer from PbS to MWNT. The photoswitch exhibited a high photo sensitivity up to 31.3% with the photocurrent of 18.3 µA under the light of 3.85 mW/cm(2), which outperformed many QD/carbon-based nanocomposites. Results indicate that the electrostatic layered assembly of QD/MWNT nanostructure is an excellent platform for the fabrication of high-performance optoelectronic devices.


Subject(s)
Lead/chemistry , Nanotubes, Carbon/chemistry , Quantum Dots/chemistry , Sulfides/chemistry , Electron Transport , Light , Nanocomposites , Nanostructures
8.
Nanoscale ; 6(5): 2634-41, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24336908

ABSTRACT

High-quality fluorographene (FG) was prepared by solvothermal exfoliation of fluorinated graphite (F-graphite) through intercalation of acetonitrile and chloroform with low boiling points. High-yield production of FG was demonstrated by wrinkled few-layered structures with disordered edges and poor regularity along the stacking direction. X-ray photo electron spectroscopy (XPS) spectra indicated that the intercalation of chloroform led to the partial transformation from covalent C-F bonds to semi-ionic C-F bonds. A lithium primary battery (Li-battery) using a FG cathode exhibited a remarkable discharge rate performance because of good Li(+) diffusion and charge mobility through nanosheets. FG nanosheets exfoliated using chloroform showed a high specific capacity of 520 mA h g(-1) and a voltage platform of 2.18 V at a current density of 1 C, accompanied by a maximum power density of 4038 W kg(-1) at 3 C, which is almost four times higher than that of F-graphite. The results indicate that the solvothermal exfoliation using a low-boiling-point solvent is a facile, efficient and high-yield approach to prepare high-purity FG nanosheets for high-performance Li-batteries.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Lithium/chemistry , Acetonitriles/chemistry , Chloroform/chemistry , Electrodes , Fluorine/chemistry , Ions/chemistry , Nanostructures/chemistry , Solvents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...