Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 167(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38236723

ABSTRACT

In brief: The proliferation of the endometrium is regulated by histone methylation. This study shows that decreased NSD2 impairs proliferative-phase endometrial stromal cell proliferation in patients with recurrent implantation failure via epigenetic reprogramming of H3K36me2 methylation on the promoter region of MCM7. Abstract: Recurrent implantation failure (RIF) is a formidable challenge in assisted reproductive technology because of its unclear molecular mechanism. Impaired human endometrial stromal cell (HESC) proliferation disrupts the rhythm of the menstrual cycle, resulting in devastating disorders between the embryo and the endometrium. The molecular function of histone methylation enzymes in modulating HESC proliferation remains largely uncharacterized. Herein, we found that the levels of histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2) and the dimethylation of lysine 36 on histone H3 are decreased significantly in the proliferative-phase endometrium of patients with RIF. Knockdown of NSD2 in an HESC cell line markedly impaired cell proliferation and globally reduced H3K36me2 binding to chromatin, leading to altered expression of many genes. Transcriptomic analyses revealed that cell cycle-related gene sets were downregulated in the endometrium of patients with RIF and in NSD2­knockdown HESCs. Furthermore, RNA-sequencing and CUT&Tag sequencing analysis suggested that NSD2 knockdown reduced the binding of H3K36me2 to the promoter region of cell cycle marker gene MCM7 (encoding minichromosome maintenance complex component 7) and downregulated its expression. The interaction of H3K36me2 with the MCM7 promoter was verified using chromatin immunoprecipitation-quantitative real-time PCR. Our results demonstrated a unifying epigenome-scale mechanism by which decreased NSD2 impairs endometrial stromal cell proliferation in the proliferative-phase endometrium of patients with RIF.


Subject(s)
Endometrium , Histones , Female , Humans , Cell Proliferation , Chromatin/metabolism , Endometrium/metabolism , Histones/metabolism , Stromal Cells/metabolism
2.
Reproduction ; 163(5): 281-291, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35239510

ABSTRACT

Recurrent pregnancy loss (RPL) is a multifactorial condition with no explanation of miscarriage in approximately half of the RPL patients, consequently leaving deep physical and emotional sequels. Transcription factor 3 (TCF3 or E2A), is a unique member of the LEF/TCF family and plays an important role in embryogenesis. However, its function in RPL is poorly understood. Using real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry, we demonstrated that TCF3 was downregulated in decidual tissues from RPL patients compared with healthy control (HC). Further, TCF3 knockdown inhibited proliferation, induced G0/G1 phase arrest, and promoted migration in human endometrial stromal cells (HESCs), while overexpression of TCF3 exhibited the opposite effects. RNA-sequencing analysis combined with gene-set enrichment analysis results showed that the mitogen-activated protein kinase pathway is potentially downstream of TCF3. Knockdown of TCF3 confirmed increased p38 phosphorylation, while overexpression of TCF3 inhibited p38 phosphorylation. Furthermore, we found that TCF3 protein level was decreased in HESCs under hypoxic incubation, while hypoxia-inducible factor-1α (HIF1A) knockdown increased the expression of TCF3. TCF3 overexpression recovered the proliferation ability of HESCs inhibited by hypoxia and reversed hypoxia-induced migration. Consistently, we found that RPL patients had a significantly higher level of HIF1A in the decidual tissue than HC. Overall, this study clarifies that increased HIF1A in the decidua contributes to the occurrence of RPL through the TCF3/p38 signaling pathway.


Subject(s)
Abortion, Habitual , Decidua , Abortion, Habitual/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Decidua/metabolism , Epithelial Cells/metabolism , Female , Humans , Pregnancy , Stromal Cells/metabolism
3.
Int J Mol Sci ; 17(8)2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27527166

ABSTRACT

Intrauterine infection is one of the most frequent causes of miscarriage. CpG oligodeoxynucleotide (CpG ODN) can mimic intrauterine infection. CpG ODN-induced embryo-resorption was observed consistently in the NK-cell deficient non-obese diabetic (NOD) mice but not in the wild-type (WT) mice. To elucidate the molecular mechanisms of differential pregnancy outcomes, differentially expressed genes (DEGs) in the placenta and decidua basalis was revealed by RNA-Seq with CpG ODN or control ODN treatment. Common DEGs in the WT and NOD mice were enriched in antimicrobial/antibacterial humoral responses that may be activated as a primary response to bacterial infection. The susceptibility to CpG ODN-induced embryo-resorption in the NOD mice might mainly be attributed to M1 macrophage polarization and the immunodeficient status, such as the down-regulation in antigen processing and presentation, allograft rejection, and natural killer cell mediated cytotoxicity. In contrast, the WT mice with normal immune systems could activate multiple immune responses and be resistant to CpG ODN-induced embryo-resorption, such as M2 macrophage differentiation and activation regulated by complement component C1q and peroxisome proliferation-activated receptor (PPAR) signaling pathways. Collectively, this study suggests that the immunodeficient status of NOD mice and the macrophage polarization regulated by C1q and PPAR signaling might be the basis for differential pregnancy outcomes between the NOD and WT mice.


Subject(s)
Decidua/metabolism , Oligodeoxyribonucleotides/pharmacology , Transcriptome/genetics , Animals , Cell Polarity/drug effects , Complement C1q/metabolism , Decidua/drug effects , Embryo Loss/genetics , Embryo Loss/pathology , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Ontology , Immune System/drug effects , Immune System/metabolism , Macrophages/cytology , Macrophages/drug effects , Mice, Inbred NOD , Pregnancy , Pregnancy Outcome , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA , Signal Transduction/drug effects
4.
J Pathol ; 239(1): 36-47, 2016 May.
Article in English | MEDLINE | ID: mdl-27071480

ABSTRACT

YY1 is a sequence-specific DNA-binding transcription factor that has many important biological roles. However, its function in trophoblasts at the maternal-fetal interface remains to be elucidated. In this study, we used an mRNA microarray and reverse transcription qPCR and compared the YY1 mRNA expression level in trophoblasts between patients with recurrent miscarriage (RM) and healthy control subjects. Our results revealed that YY1 mRNA expression was significantly lower in the trophoblasts of the RM group compared with the healthy control group. Furthermore, immunofluorescence and immunohistochemical data showed that YY1 was highly expressed in human placental villi during early pregnancy, especially in cytotrophoblast cells and invasive extravillous trophoblasts, and it was expressed at a much lower level in the placental villi of term pregnancy. YY1 overexpression enhanced, and knockdown repressed, the invasion and proliferation of trophoblasts. Antibody array screening revealed that YY1 significantly promoted MMP2 expression in trophoblasts. Bioinformatics analysis identified three YY1-binding sites in the MMP2 promoter region, and chromatin immunoprecipitation analysis verified that YY1 binds directly to its promoter region. Importantly, inhibition of YY1 by siRNA clearly decreased trophoblast invasion in an ex vivo explant culture model. Overall, our findings revealed a new regulatory pathway of YY1/MMP2 in trophoblast cell invasion during early pregnancy and indicated that YY1 may be involved in the pathogenesis of RM.


Subject(s)
Abortion, Habitual/etiology , Matrix Metalloproteinase 2/physiology , Trophoblasts/physiology , YY1 Transcription Factor/physiology , Adult , Case-Control Studies , Cell Movement/physiology , Cell Proliferation/physiology , Chorionic Villi/metabolism , Down-Regulation/physiology , Female , Gene Knockdown Techniques , Humans , In Vitro Techniques , Matrix Metalloproteinase 2/metabolism , Placentation/physiology , Pregnancy , Pregnancy Trimester, First , RNA, Messenger/metabolism , RNA, Small Interfering/pharmacology , Transcriptional Activation/physiology , Trophoblasts/metabolism , YY1 Transcription Factor/metabolism
5.
Am J Reprod Immunol ; 76(1): 38-49, 2016 07.
Article in English | MEDLINE | ID: mdl-27094728

ABSTRACT

PROBLEM: CpG oligodeoxynucleotides (ODNs) can induce immunological changes in non-obese diabetic (NOD) mice and increase embryo loss, but little is known about the mechanism. This study aimed to determine the role of adiponectin in CpG ODN-induced pregnancy failure. METHOD OF STUDY: Oligodeoxynucleotide 1826 was intraperitoneally injected to NOD mice, and ODN 2216, ODN 2006, and ODN 2395 were used to stimulate human trophoblast cell lines to investigate adiponectin expression patterns and its possible effects on trophoblast function. RESULTS: CpG ODNs downregulated adiponectin via the cJun N-terminal kinase signaling pathway and led to increased embryo loss (from 6.9 to 33.3%). ODN 2006 impaired human trophoblast cell migration, which was successfully rescued by adiponectin treatment. CONCLUSION: CpG ODNs decreased placental adiponectin expression in NOD mice and impaired human trophoblast function and was associated with increased embryo loss. Adiponectin may therefore play an important protective role in the prevention of bacteria-induced pregnancy failure.


Subject(s)
Adiponectin/immunology , Down-Regulation/drug effects , Embryo Loss , Oligodeoxyribonucleotides/adverse effects , Placenta/immunology , Animals , Down-Regulation/immunology , Embryo Loss/chemically induced , Embryo Loss/immunology , Female , Humans , Mice , Mice, Inbred NOD , Oligodeoxyribonucleotides/pharmacology , Pregnancy
6.
Am J Pathol ; 185(10): 2709-21, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26272359

ABSTRACT

Fetal trophoblasts invade endometrium and establish a complex interaction with the maternal microenvironment during early pregnancy. However, the molecular mechanisms regulating trophoblast migration and invasion at the maternal-fetal interface remain poorly understood. Immunohistochemistry and immunoblotting have shown that stathmin-1 (STMN1) was down-regulated significantly in placental villi tissue and trophoblasts from patients with recurrent miscarriage. In vitro, overexpression of STMN1 promoted human trophoblast proliferation, migration, and invasion, whereas knockdown of STMN1 inhibited these processes. In addition, knockdown of STMN1 down-regulated N-cadherin and up-regulated E-cadherin in trophoblasts, whereas E-cadherin was up-regulated and N-cadherin was down-regulated in recurrent miscarriage villi tissue. Knockdown of STMN1 attenuated cytoplasmic-nuclear translocation of ß-catenin and in turn down-regulated trophoblast matrix metalloproteases. Furthermore, tumor necrosis factor-α (TNF-α) down-regulated STMN1 expression, and serum TNF-α expression correlated inversely with trophoblast STMN1 levels. Interestingly, M1 macrophage-derived TNF-α reduced trophoblast migration and invasion, and an anti-TNF-α antibody reversed this effect. Collectively, this study indicated that STMN1 may play a key role in regulating trophoblast invasion, and that impaired STMN1 expression may lead to abnormal trophoblast invasion and result in recurrent miscarriage.


Subject(s)
Abortion, Habitual/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Stathmin/metabolism , Trophoblasts/metabolism , Abortion, Habitual/genetics , Adult , Cadherins/metabolism , Chorionic Villi/metabolism , Down-Regulation , Female , Humans , Pregnancy , Pregnancy Trimester, First/physiology , Trophoblasts/pathology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...