Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 102(50): e36393, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38115323

ABSTRACT

The aim of the present study was to analyze the clinical features, treatments, and short-term prognoses of 18 patients with novel coronavirus pneumonia (NCP) in order to provide reference for further clinical prevention and control of the epidemic. From January 29 to February 29, 2020, data from 18 patients with NCP who were positive for the 2019 novel coronavirus nucleic acid test were collected, and their clinical manifestations, laboratory tests, imaging features, and treatment protocols were analyzed retrospectively. From among the 18 patients with NCP, 9 (50%) were imported cases and 9 (50%) had contact histories with confirmed adult patients. Clinical classification was mainly of the normal type (16 cases, 88.9%). Fever and cough were common clinical symptoms, and the main laboratory indices were lymphocytopenia and leukocytopenia. The main imaging findings yielded ground-glass opacity in 12 cases (66.7%) and patchy opacity in 9 cases (50%). All 18 patients were treated with antiviral therapy and targeted treatment in accordance with their symptoms, returned negative nucleic acid tests (9-23 days) after their treatment, and were cured and discharged by March 5, 2020. During the early stages in Deyang, most patients with NCP were input cases; in the later stages, the main route of infection was close contact within the family. Close contact history in epidemiology, nucleic acid detection, and chest imaging were important references for diagnosis. Antiviral therapy resulted in good therapeutic effects. Adopting multi-departmental consultation and remote consultation in combination with traditional Chinese medicine treatment and psychological counseling may result in a good short-term prognosis.


Subject(s)
COVID-19 , Nucleic Acids , Adult , Humans , SARS-CoV-2 , Retrospective Studies , Antiviral Agents , China/epidemiology
2.
Chin J Nat Med ; 20(8): 633-640, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36031235

ABSTRACT

The ribose and phosphorus contents in Haemophilus influenzae type b (Hib) capsular polysaccharide (CPS) are two important chemical indexes for the development and quality control of Hib conjugate vaccine. A quantitative 1H- and 31P-NMR method using a single internal standard was developed for simultaneous determination of ribose and phosphorus contents in Hib CPS. Hexamethylphosphoramide (HMPA) was successfully utilized as an internal standard in quantitative 1H-NMR method for ribose content determination. The ribose and phosphorus contents were found to be affected by the concentration of polysaccharide solution. Thus, 15-20 mg·L-1 was the optimal concentration range of Hib CPS in D2O solution for determination of ribose and phosphorus contents by this method. The ribose and phosphorus contents obtained by the quantitative NMR were consistent with those obtained by traditional chemical methods. In conclusion, this quantitative 1H- and 31P-NMR method using a single internal standard shows good specificity, accuracy and precision, providing a valuable approach for the quality control of Hib glycoconjugate vaccines.


Subject(s)
Haemophilus Vaccines , Haemophilus influenzae type b , Phosphorus , Polysaccharides, Bacterial , Ribose
3.
Chin J Nat Med ; 20(6): 401-420, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35750381

ABSTRACT

Bacterial surface glycans perform a diverse and important set of biological roles, and have been widely used in the treatment of bacterial infectious diseases. The majority of bacterial surface glycans are decorated with diverse rare functional groups, including amido, acetamidino, carboxamido and pyruvate groups. These functional groups are thought to be important constituents for the biological activities of glycans. Chemical synthesis of glycans bearing these functional groups or their variants is essential for the investigation of structure-activity relationships by a medicinal chemistry approach. To date, a broad choice of synthetic methods is available for targeting the different rare functional groups in bacterial surface glycans. This article reviews the structures of naturally occurring rare functional groups in bacterial surface glycans, and the chemical methods used for installation of these groups.


Subject(s)
Bacterial Infections , Polysaccharides , Humans , Polysaccharides/chemistry , Structure-Activity Relationship
4.
Chin J Nat Med ; 20(5): 387-392, 2022 May.
Article in English | MEDLINE | ID: mdl-35551773

ABSTRACT

Most bacterial cell surface glycans are structurally unique, and have been considered as ideal target molecules for the developments of detection and diagnosis techniques, as well as vaccines. Chemical synthesis has been a promising approach to prepare well-defined oligosaccharides, facilitating the structure-activity relationship exploration and biomedical applications of bacterial glycans. L-Galactosaminuronic acid is a rare sugar that has been only found in cell surface glycans of gram-negative bacteria. Here, an orthogonally protected L-galactosaminuronic acid building block was designed and chemically synthesized. A synthetic strategy based on glycal addition and TEMPO/BAIB-mediated C6 oxidation served well for the transformation of commercial L-galactose to the corresponding L-galactosaminuronic acid. Notably, the C6 oxidation of the allyl glycoside was more efficient than that of the selenoglycoside. In addition, a balance between the formation of allyl glycoside and the recovery of selenoglycoside was essential to improve efficiency of the NIS/TfOH-catalyzed allylation. This synthetically useful L-galactosaminuronic acid building block will provide a basis for the syntheses of complex bacterial glycans.


Subject(s)
Carbohydrates , Polysaccharides , Glycosides , Oligosaccharides , Oxidation-Reduction , Polysaccharides/chemistry
5.
Acta Clin Croat ; 61(2): 193-197, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36818924

ABSTRACT

The aim was to investigate detection of pulmonary alveolar lavage fluid tuberculosis DNA by real-time fluorescent polymerase chain reaction (RT-PCR) combined with clinical application of the sputum smear-negative pulmonary tuberculosis diagnosis with TB interferon-γ release assay (TB-IGRA). From October 2014 to October 2015, 632 outpatients and inpatients treated in our hospital were randomly selected, of which 459 patients as the research group managed with RT-PCR detection combined with TB-IGRA and 173 patients as the control group undergoing electronic bronchoscopy alveolar lavage fluid detection, with detection results statistically evaluated. The positive rate in the research group was 96.51%, i.e. significantly higher than that in the control group (66.47%), yielding a statistically significant difference (χ2=109.68, p=0.00). The true positive rate was 97.7% in the research group and 67.92% in the control group; the true positive rate was significantly higher in the research group patients as compared with the control group, yielding a statistically significant difference (χ2=112.04, p=0.00). The sensitivity and specificity, as well as Youden index were significantly higher in the research group as compared with the control group. In conclusion, TB DNA detection by RT-PCR combined with TB-IGRA is a very good method of diagnosing tuberculosis, and it can be implemented in clinical diagnosis of pulmonary tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Interferon-gamma Release Tests/methods , Reverse Transcriptase Polymerase Chain Reaction , Sputum , Tuberculosis/diagnosis , Tuberculosis, Pulmonary/diagnosis , Sensitivity and Specificity , DNA
6.
Infect Drug Resist ; 14: 467-473, 2021.
Article in English | MEDLINE | ID: mdl-33603410

ABSTRACT

OBJECTIVE: This study aimed to investigate the expression of natural killer (NK) cell subsets in patients with acquired immune deficiency syndrome (AIDS) and deep fungal infections and the significance of such expression. METHODS: A total of 829 patients with AIDS, who were treated in People's Hospital of Deyang City our hospital between January 2011 and March 2019, were enrolled in the study. They were divided into two groups: those with human immunodeficiency virus (HIV) and invasive fungal infection (IFI) (HIV + IFI) (n = 390) and those with HIV and no IFI (HIV + non-IFI) (n = 439). Another 200 healthy volunteers were enrolled as the control group. The numbers of NK cell subsets in each group were compared. RESULTS: The level of NK cells, number of NK cells in all lymphocytes, proportions of CD56bright, CD56dim, and CD56dim NK cells in NK cells, and the level of CD56-CD16+ NK cells were significantly lower in the HIV + IFI group than in the HIV + non-IFI group and control group (P < 0.05). Moreover, CD4+ T, CD4+/CD8+, and NK cells were negatively correlated with HIV-RNA expression (P < 0.05). CONCLUSION: A combination of AIDS and deep fungal infection can change the immune status of a patient. This condition can be diagnosed early through the detection of NK cell expression.

7.
Chin J Nat Med ; 18(10): 723-728, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33039051

ABSTRACT

D-Allose and its derivatives play important roles in the field of health care and food nutrition. Pure and well-defined D-allose derivatives can facilitate the elucidation of their structure-activity relationship as an essential step for drug design. The Lattrell-Dax epimerization, refers to the triflate inversion using nitrite reagent, is known as valuable method for the synthesis of rare D-allose derivatives. Here, the influence of protecting group patterns on the transformation efficiency of D-glucose derivatives into synthetically useful D-alloses and D-allosamines via the Lattrell-Dax epimerization was studied. For C3 epimerization of D-glucose derivatives bearing O2-acyl group, an anomeric configuration-dependent acyl migration from O2 to O3 was found. In addition, a neighbouring group participation effect-mediated SN1 nucleophilic substitution of the D-glucosamine bearing C2 trichloroacetamido (TCA) group in the Lattrell-Dax epimerization was dependent upon anomeric configuration. Thus, the effect of anomeric configuration on the Lattrell-Dax epimerization of D-glucose suggests that ß-D-glucosides with low steric hindrance at C2 should be better substrates for the synthesis of D-allose derivatives. Significantly, the efficient synthesis of the orthogonally protected D-allose 13 and D-allosamine 18 will serve well for further assembly of complex glycans.


Subject(s)
Glucosamine/analogs & derivatives , Glucose/chemistry , Glucosamine/chemistry , Structure-Activity Relationship
8.
Chin J Nat Med ; 18(8): 628-632, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32768170

ABSTRACT

D-Glycero-D-mannno-heptose 1ß, 7-bisphosphate (HBPß) is an important intermediate for constructing the core structure of Gram-negative bacterial lipopolysaccharides and was reported as a pathogen-associated molecular pattern (PAMP) that regulates immune responses. HBPß with 3-O-amyl amine linker and its monophosphate derivative D-glycero-D-mannno-heptose 7-phosphate (HP) with 1α-amyl amine linker have been synthesized as candidates for immunity study of HBPß. The O3-amyl amine linker of heptose was installed by dibutyltin oxide-mediated regioselective alkylation under fine-tuned protecting condition. The stereoselective installation of 1ß-phosphate ester was achieved by NIS-mediated phosphorylation at low temperature. The strategy for installation of 3-O-amyl amine linker onto HBP derivative can be expanded to the syntheses of other conjugation-ready carbohydrates bearing anomeric phosphoester.


Subject(s)
Amines/chemical synthesis , Gram-Negative Bacteria/chemistry , Heptoses/chemical synthesis , Lipopolysaccharides/chemistry , Organotin Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...