Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(37): 33581-33588, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31419104

ABSTRACT

Enzymatic reduction of CO2 is of great significant, which involves an efficient multienzyme cascade system (MECS). In this work, formate dehydrogenase (FDH), glutamate dehydrogenase (GDH), and reduced pyridine nucleotide (NADH) (FDH&GDH&NADH), formaldehyde dehydrogenase (FalDH), GDH, and NADH (FalDH&GDH&NADH), and alcohol dehydrogenase (ADH), GDH, and NADH (ADH&GDH&NADH) were embedded in ZIF-8 (one kind of metal organic framework) to prepare three kinds of enzymes and coenzymes/ZIF-8 nanocomposites. Then by dead-end filtration these nanocomposites were sequentially located in a microporous membrane, which was combined with a pervaporation membrane to timely achieve the separation of product methanol. Incorporation of the pervaporation membrane was helpful to control reaction direction, and the methanol amount increased from 5.8 ± 0.5 to 6.7 ± 0.8 µmol. The reaction efficiency of an immobilized enzymes-ordered distribution in a membrane was higher than that disordered distribution in the membrane, and the methanol amount increased from 6.7 ± 0.8 to 12.6 ± 0.6 µmol. Moreover, it appeared that introduction of NADH into ZIF-8 enhanced the transformation of CO2 to methanol from 12.6 ± 0.6 to 13.4 ± 0.9 µmol. Over 50% of their original productivity was retained after 12 h of use. This method has wide applicability and can be used in other kinds of multienzyme systems.


Subject(s)
Carbon Dioxide/chemistry , Membranes, Artificial , Metal-Organic Frameworks/metabolism , Methanol/chemical synthesis , Oxidoreductases/chemistry , Methanol/chemistry , Oxidation-Reduction , Porosity
2.
J Biomater Sci Polym Ed ; 29(11): 1250-1264, 2018 08.
Article in English | MEDLINE | ID: mdl-29560789

ABSTRACT

Zinc porphyrin-based porous polymers (PPs-Zn) with different pore sizes were prepared by controlling the reaction condition of click chemistry, and the protein adsorption in PPs-Zn and the catalytic activity of immobilized enzyme were investigated. PPs-Zn-1 with 18 nm and PPS-Zn-2 with 90 nm of pore size were characterized by FTIR, NMR and nitrogen absorption experiments. The amount of adsorbed protein in PPs-Zn-1 was more than that in PPs-Zn-2 for small size proteins, such as lysozyme, lipase and bovine serum albumin (BSA). And for large size proteins including myosin and human fibrinogen (HFg), the amount of adsorbed protein in PPs-Zn-1 was less than that in PPs-Zn-2. The result indicates that the protein adsorption is size-selective in PPs-Zn. Both the protein size and the pore size have a significant effect on the amount of adsorbed protein in the PPs-Zn. Lipase and lysozyme immobilized in PPs-Zn exhibited excellent reuse stability.


Subject(s)
Lipase/isolation & purification , Metalloporphyrins/chemistry , Muramidase/isolation & purification , Polymers/chemistry , Serum Albumin, Bovine/isolation & purification , Adsorption , Click Chemistry/methods , Enzymes, Immobilized/chemistry , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...