Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Cell Biosci ; 14(1): 71, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840194

ABSTRACT

BACKGROUND: Ototoxicity is a major side effect of many broadly used aminoglycoside antibiotics (AGs) and no FDA-approved otoprotective drug is available currently. The zebrafish has recently become a valuable model to investigate AG-induced hair cell toxicity and an expanding list of otoprotective compounds that block the uptake of AGs have been identified from zebrafish-based screening; however, it remains to be established whether inhibiting intracellular cell death pathway(s) constitutes an effective strategy to protect against AG-induced ototoxicity. RESULTS: We used the zebrafish model as well as in vitro cell-based assays to investigate AG-induced cell death and found that ferroptosis is the dominant type of cell death induced by neomycin. Neomycin stimulates lipid reactive oxygen species (ROS) accumulation through mitochondrial pathway and blocking mitochondrial ferroptosis pathway effectively protects neomycin-induced cell death. We screened an alkaloid natural compound library and identified seven small compounds that protect neomycin-induced ototoxicity by targeting ferroptosis pathway: six of them are radical-trapping agents (RTAs) while the other one (ellipticine) regulates intracellular iron homeostasis, which is essential for the generation of lipid ROS to stimulate ferroptosis. CONCLUSIONS: Our study demonstrates that blocking intracellular ferroptosis pathway is an alternative strategy to ameliorate neomycin-induced ototoxicity and provides multiple hit compounds for further otoprotective drug development.

2.
Transl Neurodegener ; 13(1): 28, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811997

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.


Subject(s)
Amyotrophic Lateral Sclerosis , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/diagnosis , Humans , Superoxide Dismutase-1/genetics , Mutation/genetics
3.
Cell Metab ; 36(7): 1586-1597.e7, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38703762

ABSTRACT

The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.


Subject(s)
Cytochromes b , Animals , Cytochromes b/genetics , Cytochromes b/metabolism , Mice , Female , Mice, Transgenic , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Humans , Mice, Inbred C57BL , Genes, Mitochondrial , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male
4.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38722791

ABSTRACT

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Subject(s)
Mesenchymal Stem Cells , Neurodegenerative Diseases , Neuroinflammatory Diseases , Animals , Humans , Astrocytes/metabolism , Inflammation/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Microglia/metabolism , Microglia/immunology , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/immunology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/immunology
5.
Nat Genet ; 56(5): 953-969, 2024 May.
Article in English | MEDLINE | ID: mdl-38627598

ABSTRACT

The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/ß-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.


Subject(s)
Homeostasis , Liver Regeneration , Liver , Wnt Signaling Pathway , Animals , Liver Regeneration/genetics , Mice , Liver/metabolism , Wnt Signaling Pathway/genetics , Hepatocytes/metabolism , Hepatocytes/cytology , Cell Proliferation/genetics , Single-Cell Analysis , Gene Regulatory Networks , Gene Expression Profiling/methods , Transcriptome , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Male
6.
Cell Prolif ; 57(6): e13598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196265

ABSTRACT

Ecto-mesenchymal cells of mammalian tooth germ develops from cranial neural crest cells. These cells are recognised as a promising source for tooth development and regeneration. Despite the high heterogeneity of the neural crest, the cellular landscape of in vitro cultured cranial neural crest cells (CNCCs) for odontogenesis remains unclear. In this study, we used large-scale single-cell RNA sequencing to analyse the cellular landscape of in vitro cultured mouse CNCCs for odontogenesis. We revealed distinct cell trajectories from primary cells to passage 5 and identified a rare Alx3+/Barx1+ sub-population in primary CNCCs that differentiated into two odontogenic clusters characterised by the up-regulation of Pax9/Bmp3 and Lhx6/Dmp1. We successfully induced whole tooth-like structures containing enamel, dentin, and pulp under the mouse renal capsule using in vitro cultured cells from both cranial and trunk neural crests with induction rates of 26.7% and 22.1%, respectively. Importantly, we confirmed only cells sorted from odontogenic path can induce tooth-like structures. Cell cycle and DNA replication genes were concomitantly upregulated in the cultured NCCs of the tooth induction groups. Our data provide valuable insights into the cell heterogeneity of in vitro cultured CNCCs and their potential as a source for tooth regeneration.


Subject(s)
Cell Differentiation , Neural Crest , Odontogenesis , RNA-Seq , Single-Cell Analysis , Animals , Neural Crest/cytology , Neural Crest/metabolism , Mice , Odontogenesis/genetics , Single-Cell Analysis/methods , Cells, Cultured , Tooth Germ/metabolism , Tooth Germ/cytology , Single-Cell Gene Expression Analysis
7.
Nat Commun ; 15(1): 546, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228611

ABSTRACT

Aging in mammals is accompanied by an imbalance of intestinal homeostasis and accumulation of mitochondrial DNA (mtDNA) mutations. However, little is known about how accumulated mtDNA mutations modulate intestinal homeostasis. We observe the accumulation of mtDNA mutations in the small intestine of aged male mice, suggesting an association with physiological intestinal aging. Using polymerase gamma (POLG) mutator mice and wild-type mice, we generate male mice with progressive mtDNA mutation burdens. Investigation utilizing organoid technology and in vivo intestinal stem cell labeling reveals decreased colony formation efficiency of intestinal crypts and LGR5-expressing intestinal stem cells in response to a threshold mtDNA mutation burden. Mechanistically, increased mtDNA mutation burden exacerbates the aging phenotype of the small intestine through ATF5 dependent mitochondrial unfolded protein response (UPRmt) activation. This aging phenotype is reversed by supplementation with the NAD+ precursor, NMN. Thus, we uncover a NAD+ dependent UPRmt triggered by mtDNA mutations that regulates the intestinal aging.


Subject(s)
Aging , NAD , Mice , Male , Animals , NAD/metabolism , Aging/genetics , Aging/metabolism , Mutation , Mitochondria/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Mammals/genetics
8.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37962965

ABSTRACT

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.


Subject(s)
Scoliosis , Animals , Humans , Adolescent , Scoliosis/genetics , Scoliosis/diagnosis , Scoliosis/surgery , Glycine/genetics , Zebrafish , Synaptic Transmission
9.
Aging Dis ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37815900

ABSTRACT

Despite decades of research being conducted to understand what physiological deficits in the brain are an underlying basis of psychiatric diseases like schizophrenia, it has remained difficult to establish a direct causal relationship between neuronal dysfunction and specific behavioral phenotypes. Moreover, it remains unclear how metabolic processes, including amino acid metabolism, affect neuronal function and consequently modulate animal behaviors. PRODH, which catalyzes the first step of proline degradation, has been reported as a susceptibility gene for schizophrenia. It has consistently been shown that PRODH knockout mice exhibit schizophrenia-like behaviors. However, whether the loss of PRODH directly impacts neuronal function or whether such neuronal deficits are linked to schizophrenia-like behaviors has not yet been examined. Herein, we first ascertained that dysregulated proline metabolism in humans is associated with schizophrenia. We then found that PRODH was highly expressed in the oreins layer of the mouse dorsal hippocampus. By using AAV- mediated shRNA, we depleted PRODH expression in the mouse dorsal hippocampus and subsequently observed hyperactivity and impairments in the social behaviors, learning, and memory of these mice. Furthermore, the loss of PRODH led to altered neuronal morphology and function both in vivo and in vitro. Our study demonstrates that schizophrenia-like behaviors may arise from dysregulated proline metabolism due to the loss of PRODH and are associated with altered neuronal morphology and function in mice.

10.
Aging Dis ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37815909

ABSTRACT

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.

11.
EMBO J ; 42(21): e113448, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37737560

ABSTRACT

The nucleosome remodeling and histone deacetylase (NuRD) complex physically associates with BCL11B to regulate murine T-cell development. However, the function of NuRD complex in mature T cells remains unclear. Here, we characterize the fate and metabolism of human T cells in which key subunits of the NuRD complex or BCL11B are ablated. BCL11B and the NuRD complex bind to each other and repress natural killer (NK)-cell fate in T cells. In addition, T cells upregulate the NK cell-associated receptors and transcription factors, lyse NK-cell targets, and are reprogrammed into NK-like cells (ITNKs) upon deletion of MTA2, MBD2, CHD4, or BCL11B. ITNKs increase OPA1 expression and exhibit characteristically elongated mitochondria with augmented oxidative phosphorylation (OXPHOS) activity. OPA1-mediated elevated OXPHOS enhances cellular acetyl-CoA levels, thereby promoting the reprogramming efficiency and antitumor effects of ITNKs via regulating H3K27 acetylation at specific targets. In conclusion, our findings demonstrate that the NuRD complex and BCL11B cooperatively maintain T-cell fate directly by repressing NK cell-associated transcription and indirectly through a metabolic-epigenetic axis, providing strategies to improve the reprogramming efficiency and antitumor effects of ITNKs.


Subject(s)
Histones , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Animals , Humans , Mice , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mitochondrial Dynamics , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
12.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37604584

ABSTRACT

Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.


Subject(s)
Human Embryonic Stem Cells , Proto-Oncogene Proteins c-jun , Animals , Humans , Mice , Cell Differentiation , Chromatin/genetics , Genes, jun , Myocytes, Cardiac , Proto-Oncogene Proteins c-jun/metabolism
13.
Cell Rep ; 42(7): 112797, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436890

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy lacks persistent efficacy with "on-target, off-tumor" toxicities for treating solid tumors. Thus, an antibody-guided switchable CAR vector, the chimeric Fc receptor CD64 (CFR64), composed of a CD64 extracellular domain, is designed. T cells expressing CFR64 exert more robust cytotoxicity against cancer cells than CFR T cells with high-affinity CD16 variant (CD16v) or CD32A as their extracellular domains. CFR64 T cells also exhibit better long-term cytotoxicity and resistance to T cell exhaustion compared with conventional CAR T cells. With trastuzumab, the immunological synapse (IS) established by CFR64 is more stable with lower intensity induction of downstream signaling than anti-HER2 CAR T cells. Moreover, CFR64 T cells exhibit fused mitochondria in response to stimulation, while CARH2 T cells contain predominantly punctate mitochondria. These results show that CFR64 T cells may serve as a controllable engineered T cell therapy with prolonged persistence and long-term antitumor activity.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Fc , Trastuzumab , Xenograft Model Antitumor Assays , Animals
14.
Cytotherapy ; 25(10): 1037-1047, 2023 10.
Article in English | MEDLINE | ID: mdl-37436338

ABSTRACT

BACKGROUND AIMS: Radiation therapy is the standard treatment for patients with nasopharyngeal carcinoma (NPC), but relapse occurs in 10% to 20% of patients. The treatment of recurrent nasopharyngeal carcinoma (rNPC) remains challenging. Chimeric antigen receptors (CAR)-T-cell therapy has achieved good outcomes in the treatment of leukemia and seems to be a promising therapeutic strategy for solid tumors. c-Met has been found to be highly expressed in multiple cancer types, and the activation of c-Met leads to the proliferation and metastasis of cancer cells. However, the expression of c-Met in rNPC tissues and whether it can be used as a target for CAR-T therapy in rNPC remain to be investigated. METHODS: We detected the expression of c-Met in 24 primary human rNPC tissues and three NPC cell lines and constructed two different antibody-derived anti-c-Met CARs, namely, Ab928z and Ab1028z. To estimate the function of these two different c-Met-targeted CAR-T cells, CD69 expression, cytotoxicity and cytokine secretion of CAR-T cells were assessed after coculture with target cells. A cell line-derived xenograft mouse model also was used to evaluate these two anti-c-Met CAR-T cells. Furthermore, we determined whether combination with an anti-EGFR antibody could promote the antitumor effect of CAR-T cells in a patient-derived xenograft mouse model. RESULTS: High c-Met expression was detected in 23 of 24 primary human rNPC tissues by immunohistochemistry staining and in three NPC cell lines by flow cytometry. Ab928z-T cells and Ab1028z-T cells showed significantly upregulated expression of CD69 after coculture with targeted cells. However, Ab1028z-T cells showed superior cytokine secretion and antitumor activity. Furthermore, Ab1028z-T cells effectively suppressed tumor growth compared with control CAR-T cells, and the combination with nimotuzumab further enhanced the tumor-clearing ability of Ab1028z-T cells. CONCLUSIONS: We found that c-Met is highly expressed in rNPC tissues and confirmed its potential as a CAR-T target for rNPC. Our study provides a new idea for the clinical treatment of rNPC.


Subject(s)
Nasopharyngeal Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Mice , Cell Line, Tumor , Cytokines/metabolism , Immunotherapy, Adoptive , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Xenograft Model Antitumor Assays , Proto-Oncogene Proteins c-met/metabolism
15.
Cell Discov ; 9(1): 74, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460462

ABSTRACT

Posttranslational modification dramatically enhances protein complexity, but the function and precise mechanism of novel lysine acylation modifications remain unknown. Chemoresistance remains a daunting challenge to successful treatment. We found that lysine butyrylation (Kbu) is specifically upregulated in chemoresistant tumor cells and tissues. By integrating butyrylome profiling and gain/loss-of-function experiments, lysine 754 in HSP90 (HSP90 K754) was identified as a substrate for Kbu. Kbu modification leads to overexpression of HSP90 in esophageal squamous cell carcinoma (ESCC) and its further increase in relapse samples. Upregulation of HSP90 contributes to 5-FU resistance and can predict poor prognosis in cancer patients. Mechanistically, HSP90 K754 is regulated by the cooperation of KAT8 and HDAC11 as the writer and eraser, respectively; SDCBP increases the Kbu level and stability of HSP90 by binding competitively to HDAC11. Furthermore, SDCBP blockade with the lead compound V020-9974 can target HSP90 K754 to overcome 5-FU resistance, constituting a potential therapeutic strategy.

16.
Cell Rep ; 42(1): 111986, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640348

ABSTRACT

Membraneless condensates, such as stress granules (SGs) and processing bodies (P-bodies), have attracted wide attention due to their unique feature of rapid response to stress without first requiring nuclear feedback. In this study, we identify diaphanous-related formin 3 (DIAPH3), an actin nucleator, as a scaffold protein to initiate liquid-liquid phase separation (LLPS) and form abundant cytosolic phase-separated DIAPH3 granules (D-granules) in mammalian cells such as HeLa, HEK293, and fibroblasts under various stress conditions. Neither mRNAs nor known stress-associated condensate markers, such as G3BP1, G3BP2, and TIA1 for SGs and DCP1A for P-bodies, are detected in D-granules. Using overexpression and knockout of DIAPH3, pharmacological interventions, and optogenetics, we further demonstrate that stress-induced D-granules spatially sequester DIAPH3 within the condensation to inhibit the assembly of actin filaments in filopodia. This study reveals that D-granules formed by LLPS act as a regulatory hub for actin cytoskeletal remodeling in response to stress.


Subject(s)
Actins , DNA Helicases , Animals , Humans , HEK293 Cells , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Actin Cytoskeleton , Mammals , Formins
17.
Bioeng Transl Med ; 8(1): e10354, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684113

ABSTRACT

The high mortality rate of patients with diabetic foot ulcers is urging the appearance of an effective biomedical drug. Senescence is one of the major reasons of aging-induced decline in the diabetic wound. Our previous studies have demonstrated the anti-senescence effect of secretomes derived from human fetal mesenchymal stem cells (hfMSC). The present study tends to explore the potential role of hfMSC secretome (HFS) in wound healing through anti-aging. Meanwhile, we try to overcome several obstacles in the clinical application of stem cell secretome. A verticle bioreactor and microcarriers are employed to expand hfMSC and produce the HFS on a large scale. The HFS was then subjected to lyophilization (L-HFS). The PLGA (poly lactic-co-glycolic acid) particles were used to encapsulate and protect L-HFS from degradation in the streptozotocin (STZ)-induced diabetic rat model. Results showed that HFS-PLGA significantly enhanced wound healing by promoting vascularization and inhibiting inflammation in the skin wound bed. We further analyzed the contents of HFS. Isobaric tag for relative and absolute quantitation (ITRAQ) and label-free methods were used to identify peptides in the secretome. Bioinformatics analysis indicated that exosome production-related singling pathways and heat-shock protein family could be used as bio-functional markers and quality control for stem cell secretome production.

18.
Signal Transduct Target Ther ; 8(1): 14, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36617552

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Identification of the underlying mechanism of HCC progression and exploration of new therapeutic drugs are urgently needed. Here, a compound library consisting of 419 FDA-approved drugs was taken to screen potential anticancer drugs. A series of functional assays showed that desloratadine, an antiallergic drug, can repress proliferation in HCC cell lines, cell-derived xenograft (CDX), patient-derived organoid (PDO) and patient-derived xenograft (PDX) models. N-myristoyl transferase 1 (NMT1) was identified as a target protein of desloratadine by drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) assays. Upregulation of NMT1 expression enhanced but NMT1 knockdown suppressed tumor growth in vitro and in vivo. Metabolic labeling and mass spectrometry analyses revealed that Visinin-like protein 3 (VILIP3) was a new substrate of NMT1 in protein N-myristoylation modification, and high NMT1 or VILIP3 expression was associated with advanced stages and poor survival in HCC. Mechanistically, desloratadine binds to Asn-246 in NMT1 and inhibits its enzymatic activity, disrupting the NMT1-mediated myristoylation of the VILIP3 protein and subsequent NFκB/Bcl-2 signaling. Conclusively, this study demonstrates that desloratadine may be a novel anticancer drug and that NMT1-mediated myristoylation contributes to HCC progression and is a potential biomarker and therapeutic target in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Myristic Acid/metabolism , Protein Processing, Post-Translational
19.
Sci Bull (Beijing) ; 67(11): 1154-1169, 2022 06 15.
Article in English | MEDLINE | ID: mdl-36545982

ABSTRACT

The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood. We report a cell lineage and atlas of developing mouse teeth. We performed a large-scale (92,688 cells) single cell RNA sequencing, tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5. Combined with an assay for transposase-accessible chromatin with high-throughput sequencing, our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types. Subsequently, we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells. CD24+ and Plac8+ cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla, respectively, which could individually induce nonodontogenic epithelia to form tooth-like structures. Specifically, the Plac8+ tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date. Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.


Subject(s)
Mesenchymal Stem Cells , Tooth , Mice , Animals , Odontogenesis/genetics , Tooth Germ , Epithelium
20.
Cell Commun Signal ; 20(1): 191, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443833

ABSTRACT

BACKGROUND: Exosomes are small vesicles released by cells, which have crucial functions in intercellular communication. Exosomes originated from cell membrane invagination and are released followed by multivesicular bodies (MVBs) fused with the cell membrane. It is known that Polymerase I and Transcript Release Factor (PTRF, also known as Caveolin-associated Protein-1, CAVIN1) plays an important role in caveolae formation and exosome secretion. And PTRF in exosomes has been identified as a potential biomarker in multiple malignancies such as glioma and renal cell carcinoma. However, the mechanisms of how to regulate the secretion of exosome-related PTRF remain unknown. METHODS: We performed exogenous and endogenous immunoprecipitation assays to investigate the interaction between ubiquitin-conjugating enzyme E2O (UBE2O) and PTRF. We identified UBE2O ubiquitinated PTRF using ubiquitination assays. Then, exosomes were isolated by ultracentrifugation and identified by transmission electronic microscopy, western blot and nanoparticle tracking analysis. The effect of UBE2O on the secretion of exosome-related PTRF was analyzed by western blot, and the effect of UBE2O on exosome secretion was evaluated by exosome markers and the total protein content of exosomes. RESULTS: Here, we showed that UBE2O interacts with PTRF directly and ubiquitinates PTRF. Functionally, we found that UBE2O inhibited the effects of PTRF on exosome secretion via decreasing caveolae formation. Importantly, UBE2O decreased exosome secretion, resulting in downregulating PTRF secretion via exosomes. Our study also identified Serum Deprivation Protein Response (SDPR, also known as Caveolin-associated Protein-2, CAVIN2) interacted with both UBE2O and PTRF. Furthermore, we found that SDPR promotes PTRF expression in exosomes. Interestingly, even in the presence of SDPR, UBE2O still inhibited the secretion of exosome-related PTRF. CONCLUSIONS: Our study demonstrated that UBE2O downregulated exosome release and controlled the secretion of exosome-related PTRF through ubiquitinating PTRF. Since exosomes play an important role in malignant tumor growth and PTRF included in exosomes is a biomarker for several malignant tumors, increasing UBE2O expression in cells has the potential to be developed as a novel approach for cancer treatment. Video Abstract.


Subject(s)
Exosomes , Kidney Neoplasms , Humans , Cell Communication , Multivesicular Bodies , Ubiquitin-Conjugating Enzymes , RNA-Binding Proteins/metabolism , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...