Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Res Hepatol Gastroenterol ; 47(10): 102240, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923059

ABSTRACT

BACKGROUND: Hirschsprung's disease (HD) is a rare congenital digestive tract malformation in children. Roles of long non-coding RNAs (lncRNAs) are highlighted in various human diseases. However, knowledge on lncRNAs in HD is still limited. METHODS: The profile of lncRNAs in 8 pairs of normal and stenosed intestinal tissue of HD patients were obtained using microarray analysis. Base on bioinformatics analysis, the level of selected LINC01579-204, NEFL and miR-203a-3p was detected by qRT-PCR in 36 pairs of normal and stenosed intestinal tissue of HD patients. Then the predictive accuracy of LINC01579-204, miR-203a-3p and NEFL level to evaluate the progression of HD patients was analyzed with receiver operating characteristic curve (ROC). RESULTS: A total of 90 differentially expressed lncRNAs were detected in normal and stenosed intestinal tissue of HD patients (|fold change| ≥ 1.5, p < 0.05). The level of LINC01579-204 and NEFL decreased and miR-203a-3p increased significantly in 36 pairs of stenosed intestinal tissue of HD patients compared to the control. A notable positive correlation was identified between LINC01579-204 and NEFL (r = 0.9681, p < 0.0001). Areas under the ROC curve of the LINC01579-204, miR-203a-3p and NEFL signature were 0.715, 0.777 and 0.829, respectively. CONCLUSIONS: LINC01579-204, miR-203a-3p, and NEFL are predicted to play important roles in the progression of HD. LINC01579-204, miR-203a-3p and NEFL had a significant overall predictive ability to identify progression of HD patients. The novel experimental and bioinformatic results achieved in this study may provide new insights into the molecular of HD.


Subject(s)
Hirschsprung Disease , MicroRNAs , RNA, Long Noncoding , Child , Humans , MicroRNAs/metabolism , Hirschsprung Disease/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , ROC Curve , Cell Proliferation
2.
Pediatr Res ; 94(6): 1935-1941, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37460708

ABSTRACT

BACKGROUND: Hirschsprung disease (HSCR) is a congenital intestinal malformation. Previous HSCR animal model needs invasive operation on adult animal. The aim of this study is to establish an early-onset animal model which is consistent with the clinical manifestation of HSCR patients. METHODS: The neonatal mice were randomly divided into the benzalkonium chloride (BAC) group, treated with BAC via enema, and the control group, treated with saline. Weight changes, excretion time of carmine, CT scan, hematoxylin-eosin staining and immunofluorescence staining were used to evaluate the effect of the model. Differentially expressed genes (DEGs) in the HSCR mice were analyzed by using DAVID 6.8 database and compared with DEGs from HSCR patients. RESULTS: The weight of mice was lower and the excretion time of carmine was longer in the BAC group. Moreover, distal colon stenosis and proximal colon enlargement appeared in the BAC group. Neurons in the distal colon decreased significantly after 4 weeks of BAC treatment and almost disappeared completely after 12 weeks. Transcriptome profiling of the mouse model and HSCR patients is similar in terms of altered gene expression. CONCLUSIONS: An economical and reliable HSCR animal model which has similar clinical characteristics to HSCR patients was successfully established. IMPACT: The animal model of Hirschsprung disease was first established in BALB/c mice. This model is an animal model of early-onset HSCR that is easy to operate and consistent with clinical manifestations. Transcriptome profiling of the mouse model and HSCR patients is similar in terms of altered gene expression.


Subject(s)
Hirschsprung Disease , Humans , Mice , Animals , Hirschsprung Disease/genetics , Hirschsprung Disease/metabolism , Carmine , Intestines , Disease Models, Animal
3.
Clin Exp Gastroenterol ; 16: 59-64, 2023.
Article in English | MEDLINE | ID: mdl-37215434

ABSTRACT

Introduction: Hirschsprung's disease (HSCR) is a developmental defect of the enteric nervous system (ENS), which is caused by abnormal development of enteric neural crest cells. Its occurrence is caused by genetic factors and environmental factors. It has been reported that single nucleotide polymorphisms (SNPs) of proprotein convertase subtilisin/kexin type 2 (PCSK2) gene are associated with HSCR. However, the correlation of HSCR in southern Chinese population is still unclear. Methods: We assessed the association of rs16998727 with HSCR susceptibility in southern Chinese children using TaqMan SNP genotyping analysis of 2943 samples, including 1470 HSCR patients and 1473 controls. The association test between rs16998727 and phenotypes was performed using multivariable logistic regression analysis. Results: We got an unexpected result, PCSK2 SNP rs16998727 was not significantly different from HSCR and its HSCR subtypes: S-HSCR (OR = 1.08, 95% IC: 0.93~1.27, P_adj = 0.3208), L-HSCR (OR = 1.07, 95% IC: 0.84~1.36, P_adj = 0.5958) and TCA (OR = 0.94, 95% IC: 0.61~1.47, P_adj = 0.8001). Conclusion: In summary, we report that rs16998727 (PCSK2 and OTOR) is not associated with the risk of HSCR in southern Chinese population.

SELECTION OF CITATIONS
SEARCH DETAIL
...