Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 185: 106458, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152740

ABSTRACT

Our initial studies detected elevated levels of 3,4-dihydroxyphenyllactic acid (DHPLA) in urine samples of patients with severe heart disease when compared with healthy subjects. Given the reported anti-inflammatory properties of DHPLA and related dihydroxylated phenolic acids (DPAs), we embarked on an exploratory multi-centre investigation in patients with no urinary tract infections to establish the possible pathophysiological significance and therapeutic implications of these findings. Chinese and Caucasian patients being treated for severe heart disease or those conditions associated with inflammation (WBC ≥ 10 ×109/L or hsCRP ≥ 3.0 mg/L) and/or hypoxia (PaO2 ≤ 75 mmHg) were enrolled; their urine samples were analyzed by HPLC, HPLC-MS, GC-MS and biotransformation assays. DHPLA was detected in urine samples of patients, but undetectable in healthy volunteers. Dynamic monitoring of inpatients undergoing treatment showed their DHPLA levels declined in proportion to their clinical improvement. In DHPLA-positive patients' fecal samples, Proteus vulgaris and P. mirabilis were more abundant than healthy volunteers. In culture, these gut bacteria were capable of reversible interconversion between DOPA and DHPLA. Furthermore, porcine and rodent organs were able to metabolize DOPA to DHPLA and related phenolic acids. The elevated levels of DHPLA in these patients suggest bioactive DPAs are generated de novo as part of a human's defense mechanism against disease. Because DHPLA isolated from Radix Salvia miltiorrhizae has a multitude of pharmacological activities, these data underpin the scientific basis of this medicinal plant's ethnopharmacological applications as well as highlighting the therapeutic potential of endogenous, natural or synthetic DPAs and their derivatives in humans.


Subject(s)
Heart Diseases , Inflammation , Humans , Swine , Animals , Hypoxia , Dihydroxyphenylalanine
2.
Eur J Med Chem ; 183: 111650, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31539780

ABSTRACT

Inspired by the traditional Chinese herbal pair of Polygala tenuifolia-Acori Tatarinowii for treating epilepsy, 33 novel substituted cinnamic α-asaronol esters and analogues were designed by Combination of Traditional Chinese Medicine Molecular Chemistry (CTCMMC) strategy, synthesized and tested systematically not only for anticonvulsant activity in three mouse models but also for LDH inhibitory activity. Thereinto, 68-70 and 75 displayed excellent and broad spectra of anticonvulsant activities with modest ability in preventing neuropathic pain, as well as low neurotoxicity. The protective indices of these four compounds compared favorably with stiripentol, lacosamide, carbamazepine and valproic acid. 68-70 exhibited good LDH1 and LDH5 inhibitory activities with noncompetitive inhibition type, and were more potent than stiripentol. Notably, 70, as a representative agent, was also shown as a moderately positive allosteric modulator at human α1ß2γ2 GABAA receptors (EC50 46.3 ±â€¯7.3 µM). Thus, 68-70 were promising candidates for developing into anti-epileptic drugs, especially for treatment of refractory epilepsies such as Dravet syndrome.


Subject(s)
Anisoles/chemistry , Anticonvulsants/chemistry , Cinnamates/chemistry , Drugs, Chinese Herbal/chemistry , Esters/chemistry , L-Lactate Dehydrogenase/antagonists & inhibitors , Polygala/chemistry , Allosteric Regulation , Animals , Anisoles/pharmacology , Anticonvulsants/pharmacology , Carbamazepine/chemistry , Carbamazepine/pharmacology , Cinnamates/pharmacology , Dioxolanes/chemistry , Dioxolanes/pharmacology , Drug Design , Drugs, Chinese Herbal/pharmacology , Esters/pharmacology , Humans , Medicine, Chinese Traditional , Mice , Molecular Structure , Neuralgia/prevention & control , Receptors, GABA-A/metabolism , Structure-Activity Relationship , Valproic Acid/chemistry , Valproic Acid/pharmacology
3.
Pharmacol Rep ; 70(1): 69-74, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29331789

ABSTRACT

BACKGROUND: Epilepsy is one of chronic neurological disorders that affects 0.5-1.0% of the world's population during their lifetime. There is a still significant need to develop novel anticonvulsant drugs that possess superior efficacy, broad spectrum of activities and good safety profile. METHODS: α-Asaronol and two current antiseizure drugs (α-asarone and carbamazepine (CBZ)) were assessed by in vivo anticonvulsant screening with the three most employed standard animal seizure models, including maximal electroshock seizure (MES), subcutaneous injection-pentylenetetrazole (PTZ)-induced seizures and 3-mercaptopropionic acid (3-MP)-induced seizures in mice. Considering drug safety evaluation, acute neurotoxicity was assessed with minimal motor impairment screening determined in the rotarod test, and acute toxicity was also detected in mice. RESULTS: In our results, α-asaronol displayed a broad spectrum of anticonvulsant activity (ACA) and showed better protective indexes (PI = 11.11 in MES, PI = 8.68 in PTZ) and lower acute toxicity (LD50 = 2940 mg/kg) than its metabolic parent compound (α-asarone). Additionally, α-asaronol displayed a prominent anticonvulsant profile with ED50 values of 62.02 mg/kg in the MES and 79.45 mg/kg in the sc-PTZ screen as compared with stiripentol of ED50 of 240 mg/kg and 115 mg/kg in the relevant test, respectively. CONCLUSION: The results of the present study revealed α-asaronol can be developed as a novel molecular in the search for safer and efficient anticonvulsants having neuroprotective effects as well as low toxicity. Meanwhile, the results also suggested that α-asaronol has great potential to develop into another new aromatic allylic alcohols type anticonvulsant drug for add-on therapy of Dravet's syndrome.


Subject(s)
Anisoles/pharmacology , Anticonvulsants/pharmacology , Brain/drug effects , Seizures/prevention & control , 3-Mercaptopropionic Acid , Allylbenzene Derivatives , Animals , Anisoles/toxicity , Anticonvulsants/toxicity , Brain/physiopathology , Dioxolanes/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Electroshock , Lethal Dose 50 , Male , Mice , Motor Activity/drug effects , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Pentylenetetrazole , Rotarod Performance Test , Seizures/chemically induced , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...