Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 42(10): 1630-1641, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33495515

ABSTRACT

Respiratory syncytial virus (RSV) is leading cause of respiratory tract infections in early childhood. Gut microbiota is closely related with the pulmonary antiviral immunity. Recent evidence shows that gut dysbiosis is involved in the pathogenesis of RSV infection. Therefore; pharmacological and therapeutic strategies aiming to readjust the gut dysbiosis are increasingly important for the treatment of RSV infection. In this study, we evaluated the therapeutic effects of a probiotic mixture on RSV-infected mice. This probiotic mixture consisted of Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and VSL#3 was orally administered to neonatal mice on a daily basis either for 1 week in advance or for 3 days starting from the day of RSV infection. We showed that administration of the probiotics protected against RSV-induced lung pathology by suppressing RSV infection and exerting an antiviral response via alveolar macrophage (AM)-derived IFN-ß. Furthermore, administration of the probiotics reversed gut dysbiosis and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria in RSV-infected mice, which consequently led to elevated serum SCFA levels. Moreover, administration of the probiotics restored lung microbiota in RSV-infected mice. We demonstrated that the increased production of IFN-ß in AMs was attributed to the increased acetate in circulation and the levels of Corynebacterium and Lactobacillus in lungs. In conclusion, we reveal that probiotics protect against RSV infection in neonatal mice through a microbiota-AM axis, suggesting that the probiotics may be a promising candidate to prevent and treat RSV infection, and deserve more research and development in future.


Subject(s)
Antiviral Agents/therapeutic use , Gastrointestinal Microbiome/physiology , Macrophages, Alveolar/metabolism , Probiotics/therapeutic use , Respiratory Syncytial Virus Infections/prevention & control , Animals , Dysbiosis/metabolism , Fatty Acids, Volatile/metabolism , Female , Interferon-beta/metabolism , Lung/metabolism , Lung/microbiology , Lung/pathology , Mice, Inbred BALB C , Respiratory Syncytial Viruses/pathogenicity
2.
Inflammation ; 43(4): 1233-1245, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32198725

ABSTRACT

The therapeutic effect of electroacupuncture (EA) on inflammatory pain has been well recognized clinically, but the mechanism is unclear. Interleukin-10 (IL-10), which is produced by regulatory T (Treg) cell, is a key anti-inflammatory cytokine for relieving inflammatory pain. Therefore, the aim of this study is to investigate whether EA could inhibit CFA-induced pain and attenuate inflammation progression by regulating the activation of immunocyte and inducing the expression of IL-10. In this study, mice were treated with EA (2/100 Hz, 2 mA) for five consecutive days after 1 day of CFA injection. The behavioral tests were measured and analyzed after the daily EA treatment; then, hind paw, spinal cord, and spleen tissues were prepared for assessment. The results showed that EA treatment significantly increased the mechanical threshold and thermal latency after CFA injection and boosted the expression of IL-10 in paw and spinal cord tissues. EA treatment promoted Treg cells; suppressed macrophage and neutrophils cells; reduced the expression of IL-1ß, NLRP3, and TNF-α; and ultimately relieved inflammatory pain. The findings suggested that the analgesic and anti-inflammatory effect of EA treatment could be partially associated with suppression of pro-inflammatory cytokines mediated by induction of IL-10.


Subject(s)
Disease Progression , Electroacupuncture/methods , Freund's Adjuvant/toxicity , Interleukin-10/biosynthesis , Pain Management/methods , Pain/metabolism , Animals , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/therapy , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...