Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
J Extracell Biol ; 3(6): e152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947170

ABSTRACT

Cardiac fibrosis is the hallmark of cardiovascular disease (CVD), which is leading cause of death worldwide. Previously, we have shown that interleukin-10 (IL10) reduces pressure overload (PO)-induced cardiac fibrosis by inhibiting the recruitment of bone marrow fibroblast progenitor cells (FPCs) to the heart. However, the precise mechanism of FPC involvement in cardiac fibrosis remains unclear. Recently, exosomes and small extracellular vesicles (sEVs) have been linked to CVD progression. Thus, we hypothesized that pro-fibrotic miRNAs enriched in sEV-derived from IL10 KO FPCs promote cardiac fibrosis in pressure-overloaded myocardium. Small EVs were isolated from FPCs cultured media and characterized as per MISEV-2018 guidelines. Small EV's miRNA profiling was performed using Qiagen fibrosis-associated miRNA profiler kit. For functional analysis, sEVs were injected in the heart following TAC surgery. Interestingly, TGFß-treated IL10-KO-FPCs sEV increased profibrotic genes expression in cardiac fibroblasts. The exosomal miRNA profiling identified miR-21a-5p as the key player, and its inhibition with antagomir prevented profibrotic signalling and fibrosis. At mechanistic level, miR-21a-5p binds and stabilizes ITGAV (integrin av) mRNA. Finally, miR-21a-5p-silenced in sEV reduced PO-induced cardiac fibrosis and improved cardiac function. Our study elucidates the mechanism by which inflammatory FPC-derived sEV exacerbate cardiac fibrosis through the miR-21a-5p/ITGAV/Col1α signalling pathway, suggesting miR-21a-5p as a potential therapeutic target for treating hypertrophic cardiac remodelling and heart failure.

2.
Exp Mol Pathol ; 134: 104869, 2023 12.
Article in English | MEDLINE | ID: mdl-37690529

ABSTRACT

INTRODUCTION: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvß5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvß5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvß5 contributes to the effects of irisin during the hemorrhagic response. METHODS: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5  µg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvß5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin ß5 with nanoparticle delivery of integrin ß5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS: Hemorrhage induced reduction of integrin αvß5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin ß5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin ß5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvß5, or knockdown of integrin ß5. CONCLUSION: Integrin αvß5 plays an important role for irisin in modulating the protective effect during hemorrhage.


Subject(s)
Fibronectins , Integrin alphaV , Animals , Humans , Mice , Fibronectins/genetics , Fibronectins/pharmacology , Hemorrhage , RNA, Guide, CRISPR-Cas Systems
3.
Am J Physiol Cell Physiol ; 325(4): C1085-C1096, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37694285

ABSTRACT

Irisin is involved in the regulation of a variety of physiological conditions, metabolism, and survival. We and others have demonstrated that irisin contributes critically to modulation of insulin resistance and the improvement of cardiac function. However, whether the deletion of irisin will regulate cardiac function and insulin sensitivity in type II diabetes remains unclear. We utilized the CRISPR/Cas-9 genome-editing system to delete irisin globally in mice and high-fat diet (HFD)-induced type II diabetes model. We found that irisin deficiency did not result in developmental abnormality during the adult stage, which illustrates normal cardiac function and insulin sensitivity assessed by glucose tolerance test in the absence of stress. The ultrastructural analysis of the transmission electronic microscope (TEM) indicated that deletion of irisin did not change the morphology of mitochondria in myocardium. Gene expression profiling showed that several key signaling pathways related to integrin signaling, extracellular matrix, and insulin-like growth factors signaling were coordinately downregulated by deletion of irisin. However, when mice were fed a high-fat diet and chow food for 16 wk, ablation of irisin in mice exposed to HFD resulted in much more severe insulin resistance, metabolic derangements, profound cardiac dysfunction, and hypertrophic response and remodeling as compared with wild-type control mice. Taken together, our results indicate that the loss of irisin exacerbates insulin resistance, metabolic disorders, and cardiac dysfunction in response to HFD and promotes myocardial remodeling and hypertrophic response. This evidence reveals the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.NEW & NOTEWORTHY By utilizing the CRISPR/Cas-9 genome-editing system and high-fat diet (HFD)-induced type II diabetes model, our results provide direct evidence showing that the loss of irisin exacerbates cardiac dysfunction and insulin resistance while promoting myocardial remodeling and a hypertrophic response in HFD-induced diabetes. This study provides new insight into understanding the molecular evidence and the critical role of irisin in modulating insulin resistance and cardiac function in type II diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Diseases , Insulin Resistance , Mice , Animals , Insulin Resistance/genetics , Fibronectins/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects
4.
Research (Wash D C) ; 6: 0187, 2023.
Article in English | MEDLINE | ID: mdl-37426471

ABSTRACT

Monocyte-to-M0/M1 macrophage differentiation with unclear molecular mechanisms is a pivotal cellular event in many cardiovascular diseases including atherosclerosis. Long non-coding RNAs (lncRNAs) are a group of protein expression regulators; however, the roles of monocyte-lncRNAs in macrophage differentiation and its related vascular diseases are still unclear. The study aims to investigate whether the novel leukocyte-specific lncRNA Morrbid could regulate macrophage differentiation and atherogenesis. We identified that Morrbid was increased in monocytes and arterial walls from atherosclerotic mouse and from patients with atherosclerosis. In cultured monocytes, Morrbid expression was markedly increased during monocyte to M0 macrophage differentiation with an additional increase during M0 macrophage-to-M1 macrophage differentiation. The differentiation stimuli-induced monocyte-macrophage differentiation and the macrophage activity were inhibited by Morrbid knockdown. Moreover, overexpression of Morrbid alone was sufficient to elicit the monocyte-macrophage differentiation. The role of Morrbid in monocyte-macrophage differentiation was also identified in vivo in atherosclerotic mice and was verified in Morrbid knockout mice. We identified that PI3-kinase/Akt was involved in the up-regulation of Morrbid expression, whereas s100a10 was involved in Morrbid-mediated effect on macrophage differentiation. To provide a proof of concept of Morrbid in pathogenesis of monocyte/macrophage-related vascular disease, we applied an acute atherosclerosis model in mice. The results revealed that overexpression of Morrbid enhanced but monocyte/macrophage-specific Morrbid knockout inhibited the monocytes/macrophages recruitment and atherosclerotic lesion formation in mice. The results suggest that Morrbid is a novel biomarker and a modulator of monocyte-macrophage phenotypes, which is involved in atherogenesis.

5.
Plast Reconstr Surg ; 152(1): 98-107, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36728660

ABSTRACT

BACKGROUND: Wound healing is a widespread health problem that imposes a financial burden on health systems. Cell therapy with genetically modified adipose-derived stem cells (ADSCs) is a promising strategy for dysregulated wound repair. E2F transcription factor 1 (E2F1) is a bidirectional regulator of cytokines. Here, the authors aimed to investigate the impact and potential mechanism of E2F1 -/- ADSCs in promoting the wound healing process. METHODS: Forty-five C57BL/6 mice (specific pathogen-free, male) with 10-mm full-thickness wounds were randomly treated with subcutaneous injection of 2 × 10 6 wild-type ADSCs, 2 × 10 6 E2F1 -/- ADSCs, or phosphate-buffered saline. The wound closure rate was monitored at days 0, 3, 7, 10, and 14 after treatment. The collagen synthesis, angiogenesis, and wound contraction were calculated by Masson, immunohistochemistry, and immunofluorescent staining (CD31 and KI67), Western blotting (α-smooth muscle actin, collagen I, vascular endothelial growth factor, and transforming growth factor-ß1) separately at day 14. In vitro, the conditioned media (CM) of wild-type ADSCs and E2F1 -/- ADSCs were collected to evaluate the impact on proliferation, migration, and angiogenesis. RESULTS: In vivo, the E2F1 -/- ADSC group exhibited increased healing rate, proliferating vessels, and collagen synthesis compared with control at day 14 ( P < 0.05). Moreover, E2F1 -/- ADSCs showed enhanced vascular endothelial growth factor and transforming growth factor-ß1 expression in the wound site and CM, and the CM from E2F1 -/- ADSCs promoted the proliferation, migration, and tube formation of co-cultured cells in vitro ( P < 0.05). CONCLUSION: The E2F1 -/- ADSCs exhibited a strong paracrine ability to improve the vascularization process and collagen deposition, thereby accelerating wound healing in the rodent model. CLINICAL RELEVANCE STATEMENT: These findings show that targeting transcription factor E2F1 could regulate the paracrine function of ADSCs, developing E2F1-modified ADSCs as an effective therapeutic option for wound healing and regeneration.


Subject(s)
Transforming Growth Factor beta1 , Vascular Endothelial Growth Factor A , Mice , Male , Animals , Vascular Endothelial Growth Factor A/metabolism , Transforming Growth Factor beta1/metabolism , Mice, Inbred C57BL , Collagen/metabolism , Stem Cells/metabolism , Adipose Tissue/metabolism
6.
Cardiovasc Res ; 119(4): 1062-1076, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36647784

ABSTRACT

AIMS: We have shown that human cardiac muscle patches (hCMPs) containing three different types of cardiac cells-cardiomyocytes (CMs), smooth muscle cells (SMCs), and endothelial cells (ECs), all of which were differentiated from human pluripotent stem cells (hPSCs)-significantly improved cardiac function, infarct size, and hypertrophy in a pig model of myocardial infarction (MI). However, hPSC-derived CMs (hPSC-CMs) are phenotypically immature, which may lead to arrhythmogenic concerns; thus, since hPSC-derived cardiac fibroblasts (hPSC-CFs) appear to enhance the maturity of hPSC-CMs, we compared hCMPs containing hPSC-CMs, -SMCs, -ECs, and -CFs (4TCC-hCMPs) with a second hCMP construct that lacked hPSC-CFs but was otherwise identical [hCMP containing hPSC-CMs, -AECs, and -SMCs (3TCC-hCMPs)]. METHODS AND RESULTS: hCMPs were generated in a fibrin scaffold. MI was induced in severe combined immunodeficiency (SCID) mice through permanent coronary artery (left anterior descending) ligation, followed by treatment with cardiac muscle patches. Animal groups included: MI heart treated with 3TCC-hCMP; with 4TCC-hCMP; MI heart treated with no patch (MI group) and sham group. Cardiac function was evaluated using echocardiography, and cell engraftment rate and infarct size were evaluated histologically at 4 weeks after patch transplantation. The results from experiments in cultured hCMPs demonstrate that the inclusion of cardiac fibroblast in 4TCC-hCMPs had (i) better organized sarcomeres; (ii) abundant structural, metabolic, and ion-channel markers of CM maturation; and (iii) greater conduction velocities (31 ± 3.23 cm/s, P < 0.005) and action-potential durations (APD50 = 365 ms ± 2.649, P < 0.0001; APD = 408 ms ± 2.757, P < 0.0001) than those (velocity and APD time) in 3TCC-hCMPs. Furthermore, 4TCC-hCMPs transplantation resulted in better cardiac function [ejection fraction (EF) = 49.18% ± 0.86, P < 0.05], reduced infarct size (22.72% ± 0.98, P < 0.05), and better engraftment (15.99% ± 1.56, P < 0.05) when compared with 3TCC-hCMPs (EF = 41.55 ± 0.92%, infarct size = 39.23 ± 4.28%, and engraftment = 8.56 ± 1.79%, respectively). CONCLUSION: Collectively, these observations suggest that the inclusion of hPSC-CFs during hCMP manufacture promotes hPSC-CM maturation and increases the potency of implanted hCMPs for improving cardiac recovery in mice model of MI.


Subject(s)
Heart Injuries , Induced Pluripotent Stem Cells , Myocardial Infarction , Pluripotent Stem Cells , Humans , Mice , Animals , Swine , Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/pathology , Pluripotent Stem Cells/metabolism , Cell Differentiation , Heart Injuries/metabolism
7.
J Extracell Vesicles ; 11(10): e12246, 2022 10.
Article in English | MEDLINE | ID: mdl-36250966

ABSTRACT

Toxoplasma gondii uracil phosphoribosyltransferase (UPRT) converts 4-thiouracil (4TUc) into 4-thiouridine (4TUd), which is incorporated into nascent RNAs and can be biotinylated, then labelled with streptavidin conjugates or isolated via streptavidin-affinity methods. Here, we generated mice that expressed T. gondii UPRT only in cardiomyocytes (CM UPRT mice) and tested our hypothesis that CM-derived miRNAs (CM miRs) are transferred into remote organs after myocardial infarction (MI) by small extracellular vesicles (sEV) that are released from the heart into the peripheral blood (PB sEV). We found that 4TUd was incorporated with high specificity and sensitivity into RNAs isolated from the hearts and PB sEV of CM UPRT mice 6 h after 4TUc injection. In PB sEV, 4TUd was incorporated into CM-specific/enriched miRs including miR-208a, but not into miRs with other organ or tissue-type specificities. 4TUd-labelled miR208a was also present in lung tissues, especially lung endothelial cells (ECs), and CM-derived miR-208a (CM miR-208a) levels peaked 12 h after experimentally induced MI in PB sEV and 24 h after MI in the lung. Notably, miR-208a is expressed from intron 29 of α myosin heavy chain (αMHC), but αMHC transcripts were nearly undetectable in the lung. When PB sEV from mice that underwent MI (MI-PB sEV) or sham surgery (Sham-PB sEV) were injected into intact mice, the expression of Tmbim6 and NLK, which are suppressed by miR-208a and cooperatively regulate inflammation via the NF-κB pathway, was lower in the lungs of MI-PB sEV-treated animals than the lungs of animals treated with Sham-PB sEV or saline. In MI mice, Tmbim6 and NLK were downregulated, whereas endothelial adhesion molecules and pro-inflammatory cells were upregulated in the lung; these changes were significantly attenuated when the mice were treated with miR-208a antagomirs prior to MI surgery. Thus, CM UPRT mice enables us to track PB sEV-mediated transport of CM miRs and identify an miR-208a-mediated mechanism by which myocardial injury alters the expression of genes and inflammatory response in the lung.


Subject(s)
Extracellular Vesicles , MicroRNAs , Myocardial Infarction , Animals , Mice , Antagomirs/metabolism , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Gene Expression , Gene Expression Regulation , Lung/metabolism , MicroRNAs/genetics , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/genetics , NF-kappa B/genetics , Streptavidin/genetics , Thiouridine/metabolism
8.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232770

ABSTRACT

Hepatic glucose production (HGP) is an important component of glucose homeostasis, and deregulated HGP, particularly through gluconeogenesis, contributes to hyperglycemia and pathology of type-2 diabetes (T2D). It has been shown that the gluconeogenic gene expression is governed primarily by the transcription factor cAMP-response element (CRE)-binding protein (CREB) and its coactivator, CREB-regulated transcriptional coactivator 2 (CRTC2). Recently, we have discovered that Sam68, an adaptor protein and Src kinase substrate, potently promotes hepatic gluconeogenesis by promoting CRTC2 stability; however, the detailed mechanisms remain unclear. Here we show that in response to glucagon, Sam68 increases CREB/CRTC2 transactivity by interacting with CRTC2 in the CREB/CRTC2 complex and occupying the CRE motif of promoters, leading to gluconeogenic gene expression and glucose production. In hepatocytes, glucagon promotes Sam68 nuclear import, whereas insulin elicits its nuclear export. Furthermore, ablation of Sam68 in hepatocytes protects mice from high-fat diet (HFD)-induced hyperglycemia and significantly increased hepatic and peripheral insulin sensitivities. Thus, hepatic Sam68 potentiates CREB/CRTC2-mediated glucose production, contributes to the pathogenesis of insulin resistance, and may serve as a therapeutic target for T2D.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetes Mellitus, Type 2 , Gluconeogenesis , Glucose , Hepatocytes , Insulin Resistance , RNA-Binding Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression , Glucagon/metabolism , Gluconeogenesis/genetics , Gluconeogenesis/physiology , Glucose/metabolism , Hepatocytes/metabolism , Hepatocytes/physiology , Homeostasis , Hyperglycemia/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Insulin Resistance/physiology , Liver/metabolism , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
9.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36297305

ABSTRACT

Irisin, a cleaved product of the fibronectin type III domain containing protein-5, is produced in the muscle tissue, which plays an important role in modulating insulin resistance. However, it remains unknown if irisin provides a protective effect against the detrimental outcomes of hemorrhage. Hemorrhages were simulated in male CD-1 mice to achieve a mean arterial blood pressure of 35-45 mmHg, followed by resuscitation. Irisin (50 ng/kg) and the vehicle (saline) were administrated at the start of resuscitation. Cardiac function was assessed by echocardiography, and hemodynamics were measured through femoral artery catheterization. A glucose tolerance test was used to evaluate insulin sensitivity. An enzyme-linked immunosorbent assay was performed to detect inflammatory factors in the muscles and blood serum. Western blot was carried out to assess the irisin production in skeletal muscles. Histological analyses were used to determine tissue damage and active-caspase 3 apoptotic signals. The hemorrhage suppressed cardiac performance, as indicated by a reduced ejection fraction and fractional shortening, which was accompanied by enhanced insulin resistance and hyperinsulinemia. Furthermore, the hemorrhage resulted in a marked decrease in irisin and an increase in the production of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). Additionally, the hemorrhage caused marked edema, inflammatory cell infiltration and active-caspase 3 positive signals in skeletal muscles and cardiac muscles. Irisin treatment led to a significant improvement in the cardiac function of animals exposed to a hemorrhage. In addition, irisin treatment improved insulin sensitivity, which is consistent with the suppressed inflammatory cytokine secretion elicited by hemorrhages. Furthermore, hemorrhage-induced tissue edema, inflammatory cell infiltration, and active-caspase 3 positive signaling were attenuated by irisin treatment. The results suggest that irisin protects against damage from a hemorrhage through the modulation of insulin sensitivity.

10.
Front Cardiovasc Med ; 9: 922420, 2022.
Article in English | MEDLINE | ID: mdl-35722089

ABSTRACT

Extracellular vesicles (EVs) are lipid bilayer particles naturally released from most if not all cell types to mediate inter-cellular exchange of bioactive molecules. Mounting evidence suggest their important role in diverse pathophysiological processes in the development, growth, homeostasis, and disease. Thus, sensitive and reliable assessments of functional EV cargo transfer from donor to acceptor cells are extremely important. Here, we summarize the methods EV are labeled and their functional transfer in acceptor cells are evaluated by various reporter systems.

11.
Pharmacol Ther ; 233: 108025, 2022 05.
Article in English | MEDLINE | ID: mdl-34687770

ABSTRACT

Extracellular vesicles (EVs), including exosomes and microvesicles, are lipid bilayer particles naturally released from the cell. While exosomes are formed as intraluminal vesicles (ILVs) of the multivesicular endosomes (MVEs) and released to extracellular space upon MVE-plasma membrane fusion, microvesicles are generated through direct outward budding of the plasma membrane. Exosomes and microvesicles have same membrane orientation, different yet overlapping sizes; their cargo contents are selectively packed and dependent on the source cell type and functional state. Both exosomes and microvesicles can transfer bioactive RNAs, proteins, lipids, and metabolites from donor to recipient cells and influence the biological properties of the latter. Over the last decade, their potential roles as effective inter-tissue communicators in cardiovascular physiology and pathology have been increasingly appreciated. In addition, EVs are attractive sources of biomarkers for the diagnosis and prognosis of diseases, because they acquire their complex cargoes through cellular processes intimately linked to disease pathogenesis. Furthermore, EVs obtained from various stem/progenitor cell populations have been tested as cell-free therapy in various preclinical models of cardiovascular diseases and demonstrate unequivocally encouraging benefits. Here we summarize the findings from recent research on the biological functions of EVs in the ischemic heart disease and heart failure, and their potential as novel diagnostic biomarkers and therapeutic opportunities.


Subject(s)
Cardiovascular Diseases , Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Biomarkers/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cell Communication , Cell-Derived Microparticles/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Humans
12.
Cells ; 10(11)2021 10 26.
Article in English | MEDLINE | ID: mdl-34831118

ABSTRACT

Valosin-containing protein (VCP) was found to play a vital protective role against cardiac stresses. Genetic mutations of VCP are associated with human dilated cardiomyopathy. However, the essential role of VCP in the heart during the physiological condition remains unknown since the VCP knockout in mice is embryonically lethal. We generated a cardiac-specific dominant-negative VCP transgenic (DN-VCP TG) mouse to determine the effects of impaired VCP activity on the heart. Using echocardiography, we showed that cardiac-specific overexpression of DN-VCP induced a remarkable cardiac dilation and progressively declined cardiac function during the aging transition. Mechanistically, DN-VCP did not affect the endogenous VCP (EN-VCP) expression but significantly reduced cardiac ATPase activity in the DN-VCP TG mouse hearts, indicating a functional inhibition. DN-VCP significantly impaired the aging-related cytoplasmic/nuclear shuffling of EN-VCP and its co-factors in the heart tissues and interrupted the balance of the VCP-cofactors interaction between the activating co-factors, ubiquitin fusion degradation protein 1 (UFD-1)/nuclear protein localization protein 4 (NPL-4) complex, and its inhibiting co-factor P47, leading to the binding preference with the inhibitory co-factor, resulting in functional repression of VCP. This DN-VCP TG mouse provides a unique functional-inactivation model for investigating VCP in the heart in physiological and pathological conditions.


Subject(s)
Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Valosin Containing Protein/antagonists & inhibitors , Aging/pathology , Animals , Cell Nucleus/metabolism , Disease Models, Animal , Mice, Transgenic , Myocardium/pathology , Repressor Proteins/metabolism , Valosin Containing Protein/metabolism
13.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34679684

ABSTRACT

Heat shock protein 22 (Hsp22) is a small heat shock protein predominantly expressed in skeletal and cardiac muscle. Previous studies indicate that Hsp22 plays a vital role in protecting the heart against cardiac stress. However, the essential role of Hsp22 in the heart under physiological conditions remains largely unknown. In this study, we used an Hsp22 knockout (KO) mouse model to determine whether loss of Hsp22 impairs cardiac growth and function with increasing age under physiological conditions. Cardiac structural and functional alterations at baseline were measured using echocardiography and invasive catheterization in Hsp22 KO mice during aging transition compared to their age-matched wild-type (WT) littermates. Our results showed that Hsp22 deletion induced progressive cardiac dilation along with declined function during the aging transition. Mechanistically, the loss of Hsp22 impaired BCL-2-associated athanogene 3 (BAG3) expression and its associated cardiac autophagy, undermined cardiac energy metabolism homeostasis and increased oxidative damage. This study showed that Hsp22 played an essential role in the non-stressed heart during the early stage of aging, which may bring new insight into understanding the pathogenesis of age-related dilated cardiomyopathy.

14.
Front Pharmacol ; 12: 698714, 2021.
Article in English | MEDLINE | ID: mdl-34671252

ABSTRACT

Background: p38 regulated/activated protein kinase (PRAK) plays a crucial role in modulating cell death and survival. However, the role of PRAK in the regulation of metabolic stress remains unclear. We examined the effects of PRAK on cell survival and mitochondrial function in C2C12 myoblasts in response to high glucose stresses. Methods: PRAK of C2C12 myoblasts was knocked out by using CRISPR/Cas-9 genome editing technology. Both wild type and PRAK-/- C2C12 cells were exposed to high glucose at the concentration of 30 mmol/L to induce metabolic stress. The effect of irisin, an adipomyokine, on both wild type and PRAK-/- cells was determined to explore its relationship with RPAK. Cell viability, ATP product, glucose uptake, mitochondrial damage, and insulin signaling were assessed. Results: PRAK knockout decreased C2C12 viability in response to high glucose stress as evident by MTT assay in association with the reduction of ATP and glucose uptake. PRAK knockout enhanced apoptosis of C2C12 myoblasts in response to high glucose, consistent with an impairment in mitochondrial function, by decreasing mitochondrial membrane potential. PRAK knockout induced impairment of mitochondrial and cell damage were rescued by irisin. PRAK knockout caused decrease in phosphorylated PI3 kinase at Tyr 485, IRS-1 and AMPKα and but did not affect non-phosphorylated PI3 kinase, IRS-1 and AMPKα signaling. High glucose caused the further reduction of phosphorylated PI3 kinase, IRS-1 and AMPKα. Irisin treatment preserved phosphorylated PI3 kinase, IRS-1by rescuing PRAK in high glucose treatment. Conclusion: Our finding indicates a pivotal role of PRAK in preserving cellular survival, mitochondrial function, and high glucose stress.

16.
Front Cardiovasc Med ; 8: 737826, 2021.
Article in English | MEDLINE | ID: mdl-34485421

ABSTRACT

Doxorubicin (DOX, an anthracycline) is a widely used chemotherapy agent against various forms of cancer; however, it is also known to induce dose-dependent cardiotoxicity leading to adverse complications. Investigating the underlying molecular mechanisms and strategies to limit DOX-induced cardiotoxicity might have potential clinical implications. Our previous study has shown that expression of microRNA-377 (miR-377) increases in cardiomyocytes (CMs) after cardiac ischemia-reperfusion injury in mice, but its specific role in DOX-induced cardiotoxicity has not been elucidated. In the present study, we investigated the effect of anti-miR-377 on DOX-induced cardiac cell death, remodeling, and dysfunction. We evaluated the role of miR-377 in CM apoptosis, its target analysis by RNA sequencing, and we tested the effect of AAV9-anti-miR-377 on DOX-induced cardiotoxicity and mortality. DOX administration in mice increases miR-377 expression in the myocardium. miR-377 inhibition in cardiomyocyte cell line protects against DOX-induced cell death and oxidative stress. Furthermore, RNA sequencing and Gene Ontology (GO) analysis revealed alterations in a number of cell death/survival genes. Intriguingly, we observed accelerated mortality and enhanced myocardial remodeling in the mice pretreated with AAV9-anti-miR-377 followed by DOX administration as compared to the AAV9-scrambled-control-pretreated mice. Taken together, our data suggest that in vitro miR-377 inhibition protects against DOX-induced cardiomyocyte cell death. On the contrary, in vivo administration of AAV9-anti-miR-377 increases mortality in DOX-treated mice.

17.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34360761

ABSTRACT

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD). Wild-type and PRAK-/- mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance tests and insulin tolerance tests were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Western blot was employed to determine cellular signaling pathway. HFD-induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared with wild-type littermates. As compared with wild-type mice, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high-fat diet intervention. High-fat diet intervention displayed a decline in fractional shortening and ejection fraction. However, deletion of PRAK exacerbated the decline in cardiac function as compared with wild-type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and ßMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared with wild-type controls. Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Subject(s)
Cardiomegaly/enzymology , Diabetes Mellitus, Experimental/enzymology , Diet, High-Fat/adverse effects , Insulin Resistance , Intracellular Signaling Peptides and Proteins/metabolism , Myocardium/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Stroke Volume , Ventricular Remodeling
18.
Theranostics ; 11(16): 7995-8007, 2021.
Article in English | MEDLINE | ID: mdl-34335976

ABSTRACT

Rationale: The conserved long non-coding RNA (lncRNA) myocardial infarction associate transcript (Miat) was identified for its multiple single-nucleotide polymorphisms that are strongly associated with susceptibility to MI, but its role in cardiovascular biology remains elusive. Here we investigated whether Miat regulates cardiac response to pathological hypertrophic stimuli. Methods: Both an angiotensin II (Ang II) infusion model and a transverse aortic constriction (TAC) model were used in adult WT and Miat-null knockout (Miat-KO) mice to induce pathological cardiac hypertrophy. Heart structure and function were evaluated by echocardiography and histological assessments. Gene expression in the heart was evaluated by RNA sequencing (RNA-seq), quantitative real-time RT-PCR (qRT-PCR), and Western blotting. Primary WT and Miat-KO mouse cardiomyocytes were isolated and used in Ca2+ transient and contractility measurements. Results: Continuous Ang II infusion for 4 weeks induced concentric hypertrophy in WT mice, but to a lesser extent in Miat-KO mice. Surgical TAC for 6 weeks resulted in decreased systolic function and heart failure in WT mice but not in Miat-KO mice. In both models, Miat-KO mice displayed reduced heart-weight to tibia-length ratio, cardiomyocyte cross-sectional area, cardiomyocyte apoptosis, and cardiac interstitial fibrosis and a better-preserved capillary density, as compared to WT mice. In addition, Ang II treatment led to significantly reduced mRNA and protein expression of the Ca2+ cycling genes Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and ryanodine receptor 2 (RyR2) and a dramatic increase in global RNA splicing events in the left ventricle (LV) of WT mice, and these changes were largely blunted in Miat-KO mice. Consistently, cardiomyocytes isolated from Miat-KO mice demonstrated more efficient Ca2+ cycling and greater contractility. Conclusions: Ablation of Miat attenuates pathological hypertrophy and heart failure, in part, by enhancing cardiomyocyte contractility.


Subject(s)
Heart Failure/genetics , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , Angiotensin II/pharmacology , Animals , Apoptosis , Cardiomegaly/genetics , Disease Models, Animal , Echocardiography , Fibrosis , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , RNA, Long Noncoding/metabolism
19.
FASEB J ; 35(8): e21772, 2021 08.
Article in English | MEDLINE | ID: mdl-34252225

ABSTRACT

Genetic deletion of Src associated in mitosis of 68kDa (Sam68), a pleiotropic adaptor protein prevents high-fat diet-induced weight gain and insulin resistance. To clarify the role of Sam68 in energy metabolism in the adult stage, we generated an inducible Sam68 knockout mice. Knockout of Sam68 was induced at the age of 7-10 weeks, and then we examined the metabolic profiles of the mice. Sam68 knockout mice gained less body weight over time and at 34 or 36 weeks old, had smaller fat mass without changes in food intake and absorption efficiency. Deletion of Sam68 in mice elevated thermogenesis, increased energy expenditure, and attenuated core-temperature drop during acute cold exposure. Furthermore, we examined younger Sam68 knockout mice at 11 weeks old before their body weights deviate, and confirmed increased energy expenditure and thermogenic gene program. Thus, Sam68 is essential for the control of adipose thermogenesis and energy homeostasis in the adult.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Energy Metabolism , Thermogenesis , Adaptor Proteins, Signal Transducing/metabolism , Animals , Male , Mice , Mice, Knockout , RNA-Binding Proteins/metabolism
20.
Nat Commun ; 12(1): 3340, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099657

ABSTRACT

Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gluconeogenesis/physiology , Liver/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Blood Glucose/metabolism , DNA-Binding Proteins , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Glucagon/metabolism , Gluconeogenesis/genetics , Glucose/metabolism , Hepatocytes/metabolism , Homeostasis , Humans , Hyperglycemia , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...