Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36556647

ABSTRACT

To investigate the degradation law of the mechanical properties of corroded steel, the standard specimens from machining steel members in service for 9 years in an industrial environment were subjected to tensile tests. The influences of different degrees and types of corrosion on the fracture path, stress-strain curve, and mechanical properties of specimens were discussed. Finally, the damage constitutive model of corroded steel was established based on the damage mechanics theory. The results showed that the failure modes of corroded specimens were related to the degrees and types of corrosion. The fracture morphology of specimens with general corrosion were step-like and the fractures of steel were uneven. However, those with local corrosion were mainly flat-like, and the fracture path was along the cross section where the larger corrosion pits were located. The fracture path of the specimen was related to the interaction of the corroded surface and internal material defects (holes). Meanwhile, with the increase of corrosion degree, the yield platform of stress-strain curve gradually became shorter, or even disappeared, and the ultimate strain and elongation at break decreased, implying that the ductility of steel became worse. Ultimately, the good agreement between the curves of the model and test indicated that the damage model could reflect the damage development process of corroded steel in the tensile process better. Corrosion damage resulted in the decrease in the damage threshold, and the damage variable D decreased by the time fracture occurred and the maximum reduction rate was up to 62.5%.

2.
Materials (Basel) ; 12(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561417

ABSTRACT

The dynamic loads acting on concrete-filled steel tubular members under axial impacts by rigid bodies were studied herein by FEM. The whole impact process was simulated and the time history of the impact load was obtained. The effects of eight factors on the axial impact load were studied; these factors were the impact speed, mass ratio, axial pressure ratio, steel ratio, slenderness ratio, concrete strength, impact position, and boundary conditions. Besides this, the effects of concrete creep on the impact load were also considered by changing the material parameters of the concrete. The results show that axial impact load changes with time as a triangle. The peak value of impact load increases and the impact resistance improves with the growth of the axial pressure ratio, steel ratio, slenderness ratio, and concrete strength after creep occurs. As the eccentricity of the axial impact acting on a concrete-filled steel tubular member increases, the peak value of the impact load decreases. The enhancement of constraints at both ends of the member can improve the impact resistance. The creep reduction coefficients for the peak axial impact load of a concrete-filled steel tubular member under axial compression and considering the creep effect over 6 months and 30 years are 0.60 and 0.55, respectively. A calculation formula for the peak value of impact load was suggested based on the existing formula, and its accuracy was proved by finite element calculation in this study.

SELECTION OF CITATIONS
SEARCH DETAIL
...