Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 84: 106527, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32402948

ABSTRACT

The present work aimed to investigate the anti-rheumatism effect and the mechanism of celastrol in collagen-induced arthritis (CIA) rats. The CIA model was established in male Wistar rats by intradermal injection of bovine collagen-II in complete Freund's adjuvant (CFA) at the base of tail. The rats received oral administration of celastrol for 28 days. A variety of indicators, including paw swelling and arthritis scores, were measured for anti-rheumatism effect. Celastrol treatment attenuated paw swelling and arthritis scores in CIA rats. Celastrol improved the spleen and thymus indexes in CIA rats. The increased levels of inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and interferon (IFN)-γ, were abolished by celastrol treatment. In addition, the weakened superoxide dismutase (SOD) activity, the increased levels of malondialdehyde (MDA), and superoxide anions, and enhanced NADPH oxidase (Nox) activity were all reversed by celastrol treatment. Nox4 overexpression reversed the attenuating effects of celastrol on paw swelling and arthritis scores in CIA rats. The celastrol-induced improvement in spleen and thymus indexes in CIA rats was inhibited by Nox4 overexpression. Nox4 overexpression reversed the abolishing effects of celastrol on the increases of TNF-α, IL-1ß, IL-6, and IFN-γ levels in the serum of CIA rats. These results demonstrated that celastrol improved rheumatism in arthritis via inhibiting oxidative stress.


Subject(s)
Antioxidants/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/drug therapy , Triterpenes/therapeutic use , Animals , Antioxidants/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/blood , Arthritis, Experimental/immunology , Cytokines/blood , Male , Malondialdehyde/immunology , NADPH Oxidase 4/immunology , Oxidative Stress/drug effects , Pentacyclic Triterpenes , Rats, Wistar , Spleen/drug effects , Spleen/immunology , Superoxide Dismutase/immunology , Thymus Gland/drug effects , Thymus Gland/immunology , Triterpenes/pharmacology
2.
Oncol Lett ; 19(2): 1530-1536, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31966078

ABSTRACT

Influence mechanism of miRNA-144 on proliferation and apoptosis of osteosarcoma cells was investigated. A total of 51 cases of osteosarcoma tissue samples were collected in the department of orthopedic surgery, Xuzhou Children's Hospital, Xuzhou Medical University from January 2014 to February 2017. Additionally, 48 cases of normal bone tissues were collected. qRT-PCR was used to detect the expression of miR-144. Correlation of miR-144 expression in serum and cancer tissues was detected. ROC curve was drawn to analyze the diagnostic value of miR-144 in patients with osteosarcoma. CCK-8 was used to detect the effect of miR-144 on the proliferation ability of U2-OS after transfection. The ratio of U2-OS apoptosis after miR-144 transfection was detected by flow cytometry. Western blot analysis was used to detect the expression of Bax, caspase-3 and Bcl-2 proteins in U2-OS after transfection. The relative expression of miR-144 in osteosarcoma and osteosarcoma serum was significantly lower than that in normal bone tissue and normal human serum (P<0.05). Serum in patients was positively correlated with the expression of miR-144 in cancer tissues. The area under the miR-144 curve was 0.852, 95% CI, 0.768-0.936. The relative expression of miR-144 in MG-63 and U2-OS cells was significantly lower than that in hFOB1.19 cells (P<0.05), while significantly lower in U2-OS cells than in MG-63 cells (P<0.05). Proliferation ability of U2-OS cells transfected with miR-144-mimics was significantly inhibited and the apoptosis rate was significantly increased (P<0.05). Bcl-2 protein was significantly decreased by detection of WB and the expression of Bax and caspase-3 protein was significantly increased (P<0.05). miR-144 may be involved in the occurrence and deterioration of osteosarcoma. miR-144 can regulate proliferation and apoptosis of U2-OS cells. It is expected to become a new diagnostic and index target for osteosarcoma.

3.
Biochem Biophys Res Commun ; 513(4): 800-806, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31000197

ABSTRACT

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) overexpression promotes glioma cell progression. The aim of the current study is to silence IGF2BP1 in glioma cells by the microRNA (miRNA) strategy. The bio-informatic analyses identified that microRNA-4500 (miR-4500) putatively targets 3'-UTR (3'-untranslated region) of IGF2BP1. In A172 cells and primary human glioma cells ectopic overexpression of the wild-type miR-4500 (but not the mutant form) downregulated IGF2BP1 and its target genes (Gli1, IGF2 and c-Myc). Functional studies show that ectopic miR-4500 overexpression inhibited glioma cell growth, survival, proliferation, migration and invasion. Conversely, in A172 cells miR-4500 inhibition, by a lentiviral construct, increased expression of IGF2BP1 and its targets, promoting cell survival, proliferation and migration. Furthermore, IGF2BP1 knockout by the CRISPR/Cas9 method inhibited A172 cell progression. Significantly, miR-4500 overexpression or miR-4500 inhibition was ineffective in IGF2BP1 knockout A172 cells. At last, we show that miR-4500 levels are downregulated in human glioma tissues, correlating with IGF2BP1 upregulation. Together, we conclude that miR-4500 inhibits human glioma cell progression by targeting IGF2BP1.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Disease Progression , Glioma/genetics , Glioma/pathology , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Neoplasm Invasiveness , RNA-Binding Proteins/genetics , Up-Regulation/genetics
4.
Oncol Lett ; 13(6): 4505-4511, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28599451

ABSTRACT

Approximately 25% of osteosarcoma patients present with clinically detectable metastatic disease at the time of initial diagnosis. High-dose chemotherapy and/or surgery for the treatment of primary metastatic osteosarcoma is ineffective, and <20% of patients will survive 5 years from diagnosis. Therefore, the treatment of metastases is critical for the improvement of the prognosis of primary metastatic osteosarcoma patients. We have previously observed that overexpression of interleukin-24 (IL-24) inhibits neuroblastoma cell proliferation, migration and invasion in vitro. The present study investigated whether IL-24 may be a novel agent for osteosarcoma metastasis-suppressive treatment. It was observed that IL-24 is able to inhibit migration and invasion in spontaneously metastasizing human 143B osteosarcoma cells via the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway. IL-24 was effective in inhibiting JNK and c-Jun phosphorylation to downregulate matrix metalloproteinase (MMP)-2 and MMP-9, which contributed to the suppression of cell migration and invasion. It was concluded that IL-24 may be a potent agent in the inhibition of highly metastatic 143B osteosarcoma cells, and IL-24 may have translational potential as an effective therapeutic agent for the treatment of metastatic osteosarcoma.

5.
Biochem Biophys Res Commun ; 464(2): 401-6, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26116768

ABSTRACT

Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-d-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS.


Subject(s)
Apoptosis , Bone Neoplasms/pathology , Hexokinase/metabolism , Osteosarcoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Bone Neoplasms/enzymology , Child , Humans , Osteosarcoma/enzymology
6.
Oncol Rep ; 30(6): 2749-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24084981

ABSTRACT

Neuroblastomas are common pediatric solid tumors with a variable clinical course; approximately 50% of patients present with metastatic disease at diagnosis. The development of metastatic lesions often causes a fatal outcome. Therefore, the prevention of metastases during the early stage of tumor development is critical for the improvement of the prognosis of neuroblastoma patients. We previously observed the suppression of neuroblastoma growth in response to overexpression of interleukin-24 (IL-24) in vitro and in vivo. IL-24 exerts its tumor-suppressive effects by multiple mechanisms, including the balance of Bcl-2 family proteins toward the pro-apoptotic pathway and the activation of the caspase cascade. In this study, we used adenovirus-mediated IL-24 (Ad-IL24) to examine the effect of the ectopic production of IL-24 on cell migration and invasion in human neuroblastoma cells. We found that IL-24 effectively inhibits SH-SY5Y neuroblastoma cell migration and invasion by changing subcellular localization and cellular levels of ß-catenin and regulating the levels of proteins associated with cell migration and invasion. Thus, IL-24 should be considered a therapeutic agent that can inhibit primary neuroblastoma growth and that may prevent metastasis.


Subject(s)
Brain Neoplasms/genetics , Interleukins/genetics , Neoplasm Invasiveness/genetics , Neuroblastoma/genetics , Apoptosis/genetics , Brain Neoplasms/pathology , Cell Movement/genetics , Cell Proliferation , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Humans , Interleukins/biosynthesis , Neuroblastoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...