Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 214: 108875, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972243

ABSTRACT

Potassium (K) and magnesium (Mg) play analogous roles in regulating plant photosynthesis and carbon and nitrogen (C-N) metabolism. Based on this consensus, we hypothesize that appropriate Mg supplementation may alleviate growth inhibition under low K stress. We monitored morphological, physiological, and molecular changes in G935 apple plants under different K (0.1 and 6 mmol L-1) and Mg supply (3 and 6 mmol L-1) conditions. Low K stress caused changes in root and leaf structure, inhibited photosynthesis, and limited the root growth of the apple rootstock. Further study on Mg supplementation showed that it could promote the uptake of K+ and NO3- by upregulating the expression of K+ transporter proteins such as Arabidopsis K+ transporter 1 (MdAKT1), high-affinity K+ transporter 1 (MdHKT1), and potassium transporter 5 (MdPT5) and nitrate transporters such as nitrate transporter 1.1/1.2/2.1/2.4 (MdNRT 1.1/1.2/2.1/2.4). Mg promoted the translocation of 15N from roots to leaves and enhanced photosynthetic N utilization efficiency (PNUE) by increasing the proportion of photosynthetic N and alleviating photosynthetic restrictions. Furthermore, Mg supplementation improved the synthesis of photosynthates by enhancing the activities of sugar-metabolizing enzymes (Rubisco, SS, SPS, S6PDH). Mg also facilitated the transport of sucrose and sorbitol from leaves to roots by upregulating the expression of sucrose transporter 1.1/1.2/4.1/4.2 (MdSUT 1.1/1.2/4.1/4.2) and sorbitol transporter 1.1/1.2 (MdSOT 1.1/1.2). Overall, Mg effectively alleviated growth inhibition in apple rootstock plants under low K stress by facilitating the uptake of N and K uptake, optimizing nitrogen partitioning, enhancing nitrogen use efficiency (NUE) and PNUE, and promoting the photosynthate synthesis and translocation.

2.
Hortic Res ; 11(1): uhad253, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38486813

ABSTRACT

Nitrogen (N) and potassium (K) are two important mineral nutrients in regulating leaf photosynthesis. However, the influence of N and K interaction on photosynthesis is still not fully understood. Using a hydroponics approach, we studied the effects of different N and K conditions on the physiological characteristics, N allocation and photosynthetic capacity of apple rootstock M9T337. The results showed that high N and low K conditions significantly reduced K content in roots and leaves, resulting in N/K imbalance, and allocated more N in leaves to non-photosynthetic N. Low K conditions increased biochemical limitation (BL), mesophyll limitation (MCL), and stomatal limitation (SL). By setting different N supplies, lowering N levels under low K conditions increased the proportion of water-soluble protein N (Nw) and sodium dodecyl sulfate-soluble proteins (Ns) by balancing N/K and increased the proportion of carboxylation N and electron transfer N. This increased the maximum carboxylation rate and mesophyll conductance, which reduced MCL and BL and alleviated the low K limitation of photosynthesis in apple rootstocks. In general, our results provide new insights into the regulation of photosynthetic capacity by N/K balance, which is conducive to the coordinated supply of N and K nutrients.

3.
J Hazard Mater ; 464: 132953, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37952334

ABSTRACT

Selenium (Se) can be absorbed by plants, thereby affects plant physiological activity, interferes gene expression, alters metabolite content and influences plant growth. However, the molecular mechanism underlying the plant response to Se remains unclear. In this study, apple plants were exposed to Se at concentrations of 0, 3, 6, 9, 12, 24, and 48 µM. Low concentrations of Se promoted plant growth, while high Se concentrations (≥24 µM) reduced photosynthesis, disturbed carbon and nitrogen metabolism, damaged the antioxidant system, and ultimately inhibited plant growth. The transcriptome and metabolome revealed that Se mainly affected three pathways, namely the 'biosynthesis of amino acids', 'starch and sucrose metabolism', and 'phenylpropanoid biosynthesis' pathways. 9 µM Se improved the synthesis, catabolism and utilization of amino acids and sugars, ultimately promoted plant growth. However, 24 µM Se up-regulated the related genes expression of PK, GPT, P5CS, SUS, SPS and CYP98A, and accumulated a large number of osmoregulation substances, such as citric acid, L-proline, D-sucrose and chlorogenic acid in the roots, ultimately affected the balance between plant growth and defense. In conclusion, this study reveals new insights into the key metabolic pathway in apple plants responses to Se.


Subject(s)
Malus , Selenium , Selenium/metabolism , Transcriptome , Metabolic Networks and Pathways/genetics , Amino Acids/metabolism , Sucrose , Gene Expression Regulation, Plant
4.
Front Plant Sci ; 14: 1136179, 2023.
Article in English | MEDLINE | ID: mdl-36909439

ABSTRACT

Introduction: Both nitrogen (N) and magnesium (Mg) play important roles in biochemical and physiological processes in plants. However, the application of excessive N and insufficient Mg may be the factor leading to low nitrogen utilization rate (NUE) and fruit quality degradation in apple production. Methods: In this study, we analyzed the effects of different application rates of Mg (0, 50, 100, 150, 200 kg/ha) on the photosynthetic nitrogen use efficiency (PNUE), the accumulation and distribution of carbon (C), N metabolism, anthocyanin biosynthesis and fruit quality of the 'Red Fuji' apple in 2018 and 2019. Results: The results showed that the application of Mg significantly increased the 15NUE and increased the allocation rate of 15N in the leaves whereas the 15N allocation rate in the perennial organs and fruits was decreased. With the increase in Mg supply, the activities of N metabolism enzymes (NiR, GS, and GOGAT) were significantly promoted and the content of intermediate products in N metabolism ( NO 2 - , NH 4 + , and free amino acid) was significantly decreased. Furthermore, an appropriate rate of Mg significantly promoted the net photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE), enhanced the enzyme activities of C metabolism (SS, SPS, S6PDH), and increased the contents of sorbitol and sucrose in leaves. In addition, Mg upregulated the gene expression of sugar transporters (MdSOT1, MdSOT3, MdSUT1, and MdSUT4) in fruit stalk and fruit fresh; 13C isotope tracer technology also showed that Mg significantly increased the 13C allocation in the fruits. Mg also significantly increased the expression of anthocyanin biosynthesis genes (MdCHS and MdF3H) and transcription factors (MdMYB1 and MdbZIP44) and the content of anthocyanin in apple peel. Conclusion: The comprehensive analysis showed that the appropriate application of Mg (150 kg/ha) promoted PNUE, C-N metabolism, and anthocyanin biosynthesis in apple trees.

5.
Plant Physiol Biochem ; 196: 139-151, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706693

ABSTRACT

Both magnesium (Mg) and nitrogen (N) play many important roles in plant physiological and biochemical processes. Plants usually exhibit low nitrogen utilization efficiency (NUE) under Mg deficiency conditions, but the mechanisms by which Mg regulates NUE are not well understood. Herein, we investigated biomass, nutrient uptake, sorbitol and sucrose transport, and relative gene expression in apple seedlings under various concentrations of Mg and N treatments in hydroponic cultures. We first observed that low Mg supply significantly limited plant growth and N, Mg concentrations. Increasing the supply of N, but not Mg, partially alleviated the inhibition of plant growth under low Mg stress, which indicated that Mg deficiency had a negative impact on plant growth because it inhibits N absorption. Moreover, we found that the expression of nitrate transporter genes MdNRT2.1 and MdNRT2.4 was significantly downregulated by low Mg stress, and sufficient Mg significantly promoted sucrose and sorbitol synthesis and transport from leaves to roots by regulating relevant enzyme activity and genes expression. Further experiments showed that exogenous sorbitol could rapidly restore MdNRT2.1/2.4 expression and nitrate uptake under low Mg availability without increasing internal Mg level, suggesting that Mg may regulate MdNRT2.1/2.4 expression by regulating more sorbitol transport to roots, the effect of Mg on N was indirect, sorbitol played a key role during this process. Taken together, Mg promoted sorbitol synthesis and transport into roots, thus upregulating the expression of MdNRT2.1/2.4 and increasing the absorption of nitrate.


Subject(s)
Malus , Seedlings , Seedlings/metabolism , Nitrates/metabolism , Malus/genetics , Malus/metabolism , Magnesium/metabolism , Nitrogen/metabolism , Sorbitol/pharmacology , Sorbitol/metabolism , Sucrose/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
6.
Ecotoxicol Environ Saf ; 249: 114421, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36529044

ABSTRACT

Previous studies have determined that magnesium (Mg) in appropriate concentrations prevents plants from suffering from abiotic stress. To better understand the mechanism of Mg alleviation of aluminum (Al) stress in apple, we investigated the effect of Mg on plant growth, photosynthetic fluorescence, antioxidant system, and carbon (C) and nitrogen (N) metabolism of apple seedlings under Al toxicity (1.5 mmol/L) via a hydroponic experiment. Al stress induced the production of reactive oxygen in the leaves and roots and reduced the total dry weight (DW) by 52.37 % after 20 days of treatment relative to plants grown without Al, due to hindered photosynthesis and alterations in C and N metabolism. By contrast, total DW decreased by only 11.07 % in the Mg-treated plants under Al stress. Supplementation with 3.0 mmol/L Mg in the Al treatment decreased Al accumulation in the apple plants and reduced Al-induced oxidative damage by enhancing the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and reducing the production of H2O2 and malondialdehyde (MDA). Under Al stress, the Mg-treated plants showed a 46.17 % higher photosynthetic rate than the non-treated plants. Supplementation with Mg significantly increased the sucrose content by increasing sucrose synthase (SS) and sucrose-phosphate synthase (SPS) activities. Moreover, Mg facilitated the transport of 13C-carbohydrates from the leaves to roots. Regarding N metabolism, the nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT) activities in the roots and leaves of the Mg-treated plants were significantly higher than those of the non-treated plants under Al stress. Compared with the non-treated plants under Al stress, the Mg-treated plants exhibited a significantly high level of NO3- and soluble protein content in the leaves, roots, and stems, but a low level of free amino acids. Furthermore, Mg significantly improved nitrogen accumulation and enhanced the transport of 15N from the roots to leaves. Overall, our results revealed that Mg alleviates Al-induced growth inhibition by enhancing antioxidant capacity and C-N metabolism in apple seedlings.


Subject(s)
Antioxidants , Malus , Antioxidants/pharmacology , Antioxidants/metabolism , Seedlings , Aluminum/toxicity , Aluminum/metabolism , Magnesium/pharmacology , Magnesium/metabolism , Malus/metabolism , Carbon/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism
7.
J Agric Food Chem ; 70(48): 15057-15068, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36412927

ABSTRACT

Nitrogen (N) and potassium (K) have significant effects on apple peel color. To further understand the molecular mechanism of N-K regulation of apple color, we analyzed the apple peel under different N and K treatments using isotope labeling, transcriptomics, and metabolomics. Under high N treatments, fruit red color and anthocyanin content decreased significantly. High N decreased the 13C distribution rate and increased the Ndff values of fruits, while K increased the expression of MdSUTs and MdSOTs and promoted 13C transportation to fruits. Anthocyanin-targeted metabonomics and transcriptome analysis revealed that high N downregulated the expression of structural genes related to the anthocyanin synthesis pathway (MdPAL, Md4CL, MdF3H, MdANS, and MdUFGT) and their regulators (MdMYBs and MdbHLHs), and also decreased some metabolites contents. K alleviated this inhibition and seven anthocyanins were regulated by N-K. Our results improve the understanding of the synergistic regulation of apple fruit coloring by N-K.


Subject(s)
Malus , Malus/genetics , Potassium , Nitrogen , Anthocyanins , Metabolomics
8.
Plant Physiol Biochem ; 192: 196-206, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36244192

ABSTRACT

Excessive nitrogen (N) supply often leads to an imbalance of carbon (C) and N metabolism and inhibits plant growth. Sucrose, an important source and signaling substance of C in plants, is closely linked to N metabolism. However, it is not clear whether exogenous sucrose can mitigate the inhibitory effect of high N on plant growth by regulating C and N metabolism. In this study, we investigated the effects of exogenous sucrose on the growth, N metabolism, and C assimilation in the apple rootstock M26 seedlings under normal (5 mM NO3-, NN) and high (30 mM NO3-, HN) NO3- concentrations. Our results showed that high NO3- supply reduced plant growth, photosynthesis, and chlorophyll fluorescence, but spraying with 1% sucrose (HN + 1% Sucrose) significantly alleviated this inhibition. Application of 1% sucrose increased sucrose and sorbitol contents as well as sucrose-phosphate synthase and sucrose synthase activities in the plants under HN treatment and promoted the distribution of 13C photoassimilation products to the root. In addition, spraying with 1% sucrose alleviated the inhibition of N metabolizing enzyme activities by high NO3- supply, reduced NO3- accumulation and N content, increased free amino acid content, and promoted 15N distribution to the aboveground parts. However, spraying with 1% sucrose under the NN treatment negatively affected plant photosynthesis and carbon assimilation. In conclusion, exogenous sucrose increased the C level in plants in the presence of excess N, promoted the balance of C and N metabolism, and alleviated the inhibitory effect of high N on the apple plant growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...