Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int J Biol Macromol ; : 132831, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825287

ABSTRACT

17α-Hydroxyprogesterone (17α-OH-PROG) is an important intermediate with a wide range of applications in the pharmaceutical industry. Strategies based on efficient electron transfer and cofactor regeneration were used for the production of 17α-OH-PROG. Here, CYP260A1, Fpr and Adx were expressed using a double plasmid system, resulting in higher biotransformation efficiency. Further optimization of reaction conditions and addition of polymyxin B increased the production of 17α-OH-PROG from 12.52 mg/L to 102.37 mg/L after 12 h of biotransformation. To avoid the addition of external 5-aminolevulinic acid (ALA) as a heme precursor for the P450 enzyme, a modified C5 pathway was introduced into the engineered strain, further reducing the overall process cost. The resulting whole-cell biocatalyst achieved the highest biotransformation yield of 17α-OH-PROG reported to date, offering a promising strategy for commercial application of P450 enzymes in industrial production of hydroxylated intermediates.

2.
Adv Sci (Weinh) ; : e2309059, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639389

ABSTRACT

Pain, a comorbidity of anxiety disorders, causes substantial clinical, social, and economic burdens. Emerging evidence suggests that propofol, the most commonly used general anesthetic, may regulate psychological disorders; however, its role in pain-associated anxiety is not yet described. This study investigates the therapeutic potential of a single dose of propofol (100 mg kg-1) in alleviating pain-associated anxiety and examines the underlying neural mechanisms. In acute and chronic pain models, propofol decreased anxiety-like behaviors in the elevated plus maze (EPM) and open field (OF) tests. Propofol also reduced the serum levels of stress-related hormones including corticosterone, corticotropin-releasing hormone (CRH), and norepinephrine. Fiber photometry recordings indicated that the calcium signaling activity of CRH neurons in the paraventricular nucleus (PVNCRH) is reduced after propofol treatment. Interestingly, artificially activating PVNCRH neurons through chemogenetics interfered with the anxiety-reducing effects of propofol. Electrophysiological recordings indicated that propofol decreases the activity of PVNCRH neurons by increasing spontaneous inhibitory postsynaptic currents (sIPSCs). Further, reducing the levels of γ-aminobutyric acid type A receptor ß3 (GABAAß3) subunits in PVNCRH neurons diminished the anxiety-relieving effects of propofol. In conclusion, this study provides a mechanistic and preclinical rationale to treat pain-associated anxiety-like behaviors using a single dose of propofol.

3.
Int J Pharm ; 657: 124126, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38626845

ABSTRACT

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.


Subject(s)
Analgesics , Crystallization , Drug Synergism , Ibuprofen , Metformin , Naproxen , Solubility , Metformin/chemistry , Metformin/administration & dosage , Metformin/pharmacology , Animals , Naproxen/chemistry , Naproxen/administration & dosage , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Ibuprofen/pharmacology , Analgesics/chemistry , Analgesics/administration & dosage , Analgesics/pharmacology , Mice , Male , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Pain/drug therapy , Drug Stability , Carrageenan , Drug Liberation , Salts/chemistry
4.
Nat Commun ; 15(1): 2038, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448448

ABSTRACT

Hypertrophic scar (HS) considerably affects the appearance and causes tissue dysfunction in patients. The low bioavailability of 5-fluorouracil poses a challenge for HS treatment. Here we show a separating microneedle (MN) consisting of photo-crosslinked GelMA and 5-FuA-Pep-MA prodrug in response to high reactive oxygen species (ROS) levels and overexpression of matrix metalloproteinases (MMPs) in the HS pathological microenvironment. In vivo experiments in female mice demonstrate that the retention of MN tips in the tissue provides a slowly sustained drug release manner. Importantly, drug-loaded MNs could remodel the pathological microenvironment of female rabbit ear HS tissues by ROS scavenging and MMPs consumption. Bulk and single cell RNA sequencing analyses confirm that drug-loaded MNs could reverse skin fibrosis through down-regulation of BCL-2-associated death promoter (BAD), insulin-like growth factor 1 receptor (IGF1R) pathways, simultaneously regulate inflammatory response and keratinocyte differentiation via up-regulation of toll-like receptors (TOLL), interleukin-1 receptor (IL1R) and keratinocyte pathways, and promote the interactions between fibroblasts and keratinocytes via ligand-receptor pair of proteoglycans 2 (HSPG2)-dystroglycan 1(DAG1). This study reveals the potential therapeutic mechanism of drug-loaded MNs in HS treatment and presents a broad prospect for clinical application.


Subject(s)
Cicatrix, Hypertrophic , Humans , Animals , Female , Mice , Rabbits , Cicatrix, Hypertrophic/drug therapy , Reactive Oxygen Species , Biological Availability , Cell Differentiation , Matrix Metalloproteinases
5.
Adv Sci (Weinh) ; 11(14): e2306478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308132

ABSTRACT

Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.


Subject(s)
Fructose , Racemases and Epimerases , Fructose/chemistry , Fructose/metabolism , Biological Evolution
6.
J Colloid Interface Sci ; 663: 1074-1086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331692

ABSTRACT

Drug-resistant biofilm infection is an extremely serious clinical problem, that easily leads to failure of antibiotic treatment. Although gold nanoparticles (AuNPs) as photothermal agents have been widely used in biofilm eradication, there are still challenges to be addressed, such as insignificantly redshifted absorption and slow assembly process of aggregated AuNPs. Herein, we developed an acidity-activated dispersion-to-aggregation transition to enhance the accumulation of self-complementary zwitterionic peptide-decorated AuNPs for photothermal eradication of drug-resistant biofilm infections. AuNPs were decorated with self-complementary zwitterionic peptides (ZP1 and ZP2) coupled with pH-sensitive anhydride (DMA) and pH-insensitive anhydride (SA), respectively. ZP2-decorated AuNPs with DMA modification (AuNP@ZP2(DMA)) exhibited prolonged blood circulation and enhanced accumulation in acidic biofilm microenvironment. Moreover, the electrostatic attraction between self-complementary ligands drove AuNPs to form closely packed aggregates with strong near-infrared absorption, leading to in vivo photoacoustic imaging ability and photothermal effect against drug-resistant bacteria and fungus, as well as microbial biofilms. AuNP@ZP2(DMA) with longer charge domains and a polyethylene glycol oligomer spacer showed greater photothermal antimicrobial and biofilm resistance in vitro and in vivo. This study develops an innovative acidity-activated AuNP photothermal agent, which provides an effective approach for treatment of biofilm infections.


Subject(s)
Gold , Metal Nanoparticles , Gold/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Anhydrides/pharmacology
7.
Eur J Pediatr ; 183(5): 2003-2014, 2024 May.
Article in English | MEDLINE | ID: mdl-38416259

ABSTRACT

The purpose of this systematic review was to synthesise the evidence for the association of adherence to the 24-h movement guidelines with academic-related outcomes in children and adolescents. This systematic review was based on the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. PubMed, PsycINFO, Scopus, WOS, SPORTDiscus, and EMBASE were searched from their inception to 12 December 2023. The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was used to assess the risk of bias of included studies. In total, 4326 records were identified through database searches; 10 articles met the inclusion criteria and were included in this systematic review. There were eight cross-sectional studies and two longitudinal studies; the main academic-related outcomes were academic achievement and cognitive function. A small association between adherence to all three recommendations and academic achievement (k = 5, r = 0.17, 95% CI = 0.10-0.24, I2 = 49%) was found compared to those who did not adhere to any recommendations.   Conclusion: Findings from this systematic review and meta-analysis reveal a small association between adherence to all three recommendations and greater academic achievement in children and adolescents. Nevertheless, it is imperative to underscore the need for more studies to establish robust evidence underpinning this relationship.   Trial registration: PROSPERO (CRD42021295403). What is Known: • Regular physical activity, reduced screen time, and optimal sleep duration are independently associated with improved academic-related outcomes in children and adolescents. • The associations between adherence to the 24-h movement guidelines and academic-related outcomes in children and adolescents have not been quantitatively synthesised. What is New: • There is a small but positive association between adherence to all three recommendations of the 24-h movement guidelines and greater academic achievement in children and adolescents. • Further well-designed research is needed to focus on academic achievement, cognitive function and classroom behaviours in young individuals.


Subject(s)
Academic Success , Humans , Adolescent , Child , Exercise , Guideline Adherence/statistics & numerical data , Cognition
8.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203770

ABSTRACT

False smut, caused by Villosiclava virens, is becoming increasingly serious in modern rice production systems, leading to yield losses and quality declines. Successful infection requires efficient acquisition of sucrose, abundant in rice panicles, as well as other sugars. Sugar transporters (STPs) may play an important role in this process. STPs belong to a major facilitator superfamily, which consists of large multigenic families necessary to partition sugars between fungal pathogens and their hosts. This study identified and characterized the STP family of V. viren, and further analyzed their gene functions to uncover their roles in interactions with rice. Through genome-wide and systematic bioinformatics analyses, 35 STPs were identified from V.virens and named from VvSTP1 to VvSTP35. Transmembrane domains, gene structures, and conserved motifs of VvSTPs have been identified and characterized through the bioinformatic analysis. In addition, a phylogenetic analysis revealed relationship between VvSTPs and STPs from the other three reference fungi. According to a qRT-PCR and RNA-sequencing analysis, VvSTP expression responded differently to different sole carbon sources and H2O2 treatments, and changed during the pathogenic process, suggesting that these proteins are involved in interactions with rice and potentially functional in pathogenesis. In total, 12 representative VvSTPs were knocked out through genetic recombination in order to analyze their roles in pathogenicity of V. virens. The knock-out mutants of VvSTPs showed little difference in mycelia growth and conidiation, indicating a single gene in this family cannot influence vegetative growth of V. virens. It is clear, however, that these mutants result in a change in infection efficiency in a different way, indicating that VvSTPs play an important role in the pathogenicity of virens. This study is expected to contribute to a better understanding of how host-derived sugars contribute to V. virens pathogenicity.


Subject(s)
Hypocreales , Oryza , Oryza/genetics , Hydrogen Peroxide , Phylogeny
9.
Food Funct ; 15(3): 1720, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226873

ABSTRACT

Correction for 'Wheat peptides inhibit the activation of MAPK and NF-κB inflammatory pathways and maintain epithelial barrier integrity in NSAID-induced intestinal epithelial injury' by Zhiyuan Feng et al., Food Funct., 2024, https://doi.org/10.1039/D3FO03954D.

10.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044237

ABSTRACT

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Ketamine , Thalamus , Animals , Mice , Anesthesia, General , Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Ketamine/pharmacology , Thalamus/drug effects
11.
Food Funct ; 15(2): 823-837, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38131381

ABSTRACT

The use of non-steroidal anti-inflammatory drugs (NSAIDs) has negative effects on the gastrointestinal tract, but the proton pump inhibitors currently in use only protect against gastrointestinal disease and may even make NSAID-induced enteropathy worse. Therefore, new approaches to treating enteropathy are required. This study aimed to investigate the protective effect of wheat peptides (WPs) against NSAID-induced intestinal damage in mice and their mechanism. Here, an in vivo mouse model was built to investigate the protective and reparative effects of different concentrations of WPs on NSAID-induced intestinal injury. WPs ameliorated NSAID-induced weight loss and small intestinal tissue damage in mice. WP treatment inhibited NSAID-induced injury leading to increased levels of oxidative stress and expression levels of inflammatory factors. WPs protected and repaired the integrity and permeability injury of the intestinal tight junction induced by NSAIDs. An in vitro Caco-2 cell model was built with lipopolysaccharide (LPS). WP pretreatment inhibited LPS-induced changes in the Caco-2 cell permeability and elevated the levels of oxidative stress. WPs inhibited LPS-induced phosphorylation of NF-κB p65 and mitogen-activated protein kinase (MAPK) signaling pathways and reduced the expression of inflammatory factors. In addition, WPs increased tight junction protein expression, which contributed to improved intestinal epithelial dysfunction. Our results suggest that WPs can ameliorate NSAID-induced impairment of intestinal barrier functional integrity by improving intestinal oxidative stress levels and reducing inflammatory factor expression through inhibition of NF-κB p65 and MAPK signaling pathway activation. WPs can therefore be used as potential dietary supplements to reduce NSAID-induced injury of the intestine.


Subject(s)
Gastrointestinal Diseases , Intestinal Diseases , Humans , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Mitogen-Activated Protein Kinases/metabolism , Triticum/metabolism , Caco-2 Cells , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Lipopolysaccharides/pharmacology , Intestinal Diseases/metabolism , Peptides/pharmacology , Peptides/metabolism , Intestinal Mucosa/metabolism
12.
J Agric Food Chem ; 71(47): 18431-18442, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37970673

ABSTRACT

D-Allulose, a functional sweetener, can be synthesized from fructose using D-allulose 3-epimerase (DAEase). Nevertheless, a majority of the reported DAEases have inadequate stability under harsh industrial reaction conditions, which greatly limits their practical applications. In this study, big data mining combined with a computer-guided free energy calculation strategy was employed to discover a novel DAEase with excellent thermostability. Consensus sequence analysis of flexible regions and comparison of binding energies after substrate docking were performed using phylogeny-guided big data analyses. TtDAE from Thermogutta terrifontis was the most thermostable among 358 candidate enzymes, with a half-life of 32 h at 70 °C. Subsequently, structure-guided virtual screening and a customized strategy based on a combinatorial active-site saturation test/iterative saturation mutagenesis were utilized to engineer TtDAE. Finally, the catalytic activity of the M4 variant (P105A/L14C/T63G/I65A) was increased by 5.12-fold. Steered molecular dynamics simulations indicated that M4 had an enlarged substrate-binding pocket, which enhanced the fit between the enzyme and the substrate. The approach presented here, combining DAEases mining with further rational modification, provides guidance for obtaining promising catalysts for industrial-scale production.


Subject(s)
Fructose , Racemases and Epimerases , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Fructose/chemistry , Protein Engineering , Sweetening Agents , Enzyme Stability
13.
Macromol Biosci ; : e2300451, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37997560

ABSTRACT

Antimicrobial peptides (AMPs) potentially serve as ideal antimicrobial agents for the treatment of polymicrobial abdominal infections due to their broad-spectrum antimicrobial activity and excellent biocompatibility. However, the balance of chain length, positive charges, and hydrophobicity on the antimicrobial activity of AMPs are still far from being optimal. Herein, a series of AMPs ([KX]n -NH2 , X = Ile, Leu or Phe, n = 3, 4, 5, or 6) with varied charges and hydrophobicity for the treatment of polymicrobial abdominal infections are designed. Specifically, [KI]4 -NH2 peptide exhibits the best in vitro antimicrobial activity against Gram-positive and -negative bacteria, as well as fungal strains. Based on the good cell biocompatibility, [KI]4 -NH2 peptide is found to have negligible in vivo toxicity at the dosage of up to 28 mg kg-1 . Furthermore, great in vivo therapeutic efficacy of [KI]4 -NH2 peptide against S. typhimurium is demonstrated in the mice abdominal infection model. The design of short sequence of antimicrobial peptides with a charge/hydrophobicity balanced structures provides a simple and efficient strategy for potential clinical applications of antimicrobial peptide-based biomaterials in a variety of bacterial infection diseases.

14.
J Agric Food Chem ; 71(42): 15713-15722, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823838

ABSTRACT

d-Allose is a low-calorie rare sugar with great application potential in the food and pharmaceutical industries. The production of d-allose has been accomplished using l-rhamnose isomerase (L-RI), but concomitantly increasing the enzyme's stability and activity remains challenging. Here, we rationally engineered an L-RI from Clostridium stercorarium to enhance its stability by comprehensive computation-aided redesign of its flexible regions, which were successively identified using molecular dynamics simulations. The resulting combinatorial mutant M2-4 exhibited a 5.7-fold increased half-life at 75 °C while also exhibiting improved catalytic efficiency. Especially, by combining structure modeling and multiple sequence alignment, we identified an α0 region that was universal in the L-RI family and likely acted as a "helix-breaker". Truncating this region is crucial for improving the thermostability of related enzymes. Our work provides a significantly stable biocatalyst with potential for the industrial production of d-allose.


Subject(s)
Aldose-Ketose Isomerases , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Glucose/chemistry , Aldose-Ketose Isomerases/chemistry , Enzyme Stability
15.
Nat Commun ; 14(1): 3642, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339964

ABSTRACT

BCMA-targeting chimeric antigen receptor (CAR) T cell therapy demonstrates impressive clinical response in multiple myeloma (MM). However, some patients with BCMA-deficient tumours cannot benefit from this therapy, and others can experience BCMA antigen loss leading to relapse, thus necessitating the identification of additional CAR-T targets. Here, we show that FcRH5 is expressed on multiple myeloma cells and can be targeted with CAR-T cells. FcRH5 CAR-T cells elicited antigen-specific activation, cytokine secretion and cytotoxicity against MM cells. Moreover, FcRH5 CAR-T cells exhibited robust tumoricidal efficacy in murine xenograft models, including one deficient in BCMA expression. We also show that different forms of soluble FcRH5 can interfere with the efficacy of FcRH5 CAR-T cells. Lastly, FcRH5/BCMA-bispecific CAR-T cells efficiently recognized MM cells expressing FcRH5 and/or BCMA and displayed improved efficacy, compared with mono-specific CAR-T cells in vivo. These findings suggest that targeting FcRH5 with CAR-T cells may represent a promising therapeutic avenue for MM.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Animals , Mice , Multiple Myeloma/pathology , B-Cell Maturation Antigen , Heterografts , Neoplasm Recurrence, Local/metabolism , T-Lymphocytes
16.
Eur J Pharmacol ; 954: 175870, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37353189

ABSTRACT

Chronic pain is a common public health problem and remains an unmet medical need. Currently available analgesics usually have limited efficacy for the treatment of chronic pain, including neuropathic pain and persistent inflammatory pain, or they are accompanied by many adverse side effects. The voltage-gated calcium channel blocker (pregabalin) and potassium channel openers (flupirtine and retigabine) have been widely used for the management of chronic pain, but their effectiveness in combination is unclear. In this research, we evaluated the antinociceptive effects of pregabalin in combination with flupirtine or retigabine in carrageenan-induced inflammatory pain and paclitaxel-induced peripheral neuropathy in mice using the von Frey test. Isobolographic analysis indicated that pregabalin exerted synergistic antinociceptive effects when combined with flupirtine or retigabine in neuropathic and inflammatory pain models. Furthermore, the antinociceptive effects of pregabalin, flupirtine/retigabine, and their combinations were significantly attenuated by the Kv7 channel blocker XE991. The favored dose ratio between pregabalin and flupirtine/retigabine in combinations was also investigated. Finally, we evaluated the motor coordination of their combinations using the rotarod test, and the outcomes underpinned their safety. Collectively, our results support the potential use of pregabalin in combination with flupirtine or retigabine to alleviate chronic pain.


Subject(s)
Chronic Pain , Mice , Animals , Pregabalin/pharmacology , Pregabalin/therapeutic use , Chronic Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use
17.
Virology ; 584: 53-57, 2023 07.
Article in English | MEDLINE | ID: mdl-37244055

ABSTRACT

Human papillomavirus (HPV) has been recognized as an important risk factor in penile cancer. This study aimed to investigate the HPV subtypes and integration status in Chinese patients. Samples were collected from 103 penile cancer patients aged 24-90 years between 2013 and 2019. We found that HPV infection rate was 72.8%, with 28.0% integration. The aging patients were more susceptible to HPV (p = 0.009). HPV16 was the most frequent subtype observed (52/75) and exhibited the highest frequency of integration events, with 11 out of 30 single infection cases showing integration positive. The HPV integrations sites in the viral genome were not randomly distributed, the breakpoints were enriched in the E1 gene (p = 0.006) but relatively scarce in L1, E6 and E7. Our research might provide some clues how HPV leads to the progression of penile cancer.


Subject(s)
Human Papillomavirus Viruses , Oncogene Proteins, Viral , Papillomavirus Infections , Penile Neoplasms , Humans , Male , Cross-Sectional Studies , East Asian People , Genotype , Human Papillomavirus Viruses/genetics , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Penile Neoplasms/epidemiology , Penile Neoplasms/virology , Adult , Middle Aged , Aged , Aged, 80 and over
18.
Cent Eur J Immunol ; 48(1): 1-13, 2023.
Article in English | MEDLINE | ID: mdl-37206593

ABSTRACT

INTRODUCTION: Chimeric antigen receptor (CAR)-NK cells are considered safer than CAR-T cells due to their short lifetime and production of lower toxicity cytokines. By virtue of unlimited proliferative ability in vitro, NK-92 cells could be utilized as the source for CAR-engineered NK cells. CD22 is highly expressed in B cell lymphoma. The goal of our study was to determine whether CD22 could become an alternative target for CAR-NK-92 therapy against B cell lymphoma. MATERIAL AND METHODS: We first generated m971-BBZ NK-92 that expressed a CAR for binding CD22 in vitro. The expression of CAR was assessed by flow cytometric analysis as well as immunoblotting. The cytotoxicity of the m971-BBZ NK-92 cells towards target lymphoma cells was determined by the luciferase-based cytolysis assay. The production of cytokines in CAR NK-92 cells in response to target cells was evaluated by ELISA assay. Lastly, the cytolytic effect was evaluated by the cytolysis assay mentioned above following irradiation. The level of inhibitory receptor of CAR-expressing cells was assessed by flow cytometry. RESULTS: CD22-specific CAR was expressed on m971-BBZ NK-92 cells successfully. m971-BBZ NK-92 cells efficiently lysed CD22-expressing lymphoma cells and produced large amounts of cytokines after coculture with target cells. Meanwhile, irradiation did not apparently influence the cytotoxicity of m971-BBZ NK-92 cells. Inhibitory receptor detection exhibited a lower level of PD-1 in m971-BBZ NK-92 cells than FMC-63 BBZ T cells after repeated antigen stimulation. CONCLUSIONS: Our data show that adoptive transfer of m971-BBZ NK-92 could serve as a promising strategy for immunotherapy of B cell lymphoma.

19.
Crit Rev Biotechnol ; : 1-19, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160372

ABSTRACT

D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...