Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 25(5): 3098-3111, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38606583

ABSTRACT

Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.


Subject(s)
Anti-Inflammatory Agents , Anticoagulants , Bivalvia , Polyesters , Stents , Animals , Bivalvia/chemistry , Mice , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Stents/adverse effects , Anticoagulants/chemistry , Anticoagulants/pharmacology , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Alginates/chemistry , Alginates/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tannins/chemistry , Tannins/pharmacology , Humans , Methacrylates
2.
J Hazard Mater ; 402: 123817, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254806

ABSTRACT

The treatment of VOCs (volatile organic compounds) in waste streams is very important. Herein, we propose to use a network microporous polyimide (PI) membrane for the molecular sieving of nitrogen over VOC molecules to control their emission. 2,6,14-triaminotriptycene (Trip) was reacted with aromatic dianhydride monomers, such as 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), to synthesize ultramicroporous polyimides, which readily form composite membranes via solution coating. The properties of the PIs were characterized by X-ray photoelectron spectroscopy (XPS), Brunner-Emmet-Teller (BET) analysis, etc., which validated the formation of a network structure and ultramicroporosity in these polyimides. Therefore, the outstanding separation performance for the separation of nitrogen over VOCs, such as cyclohexane, by molecular sieving was obtained by using these membranes; a rejection higher than 99 % was realized with a permeability of approximately 2000∼2600 Barrer under a temperature of 25 °C and feed concentration of 30,000 ± 2000 ppm. Finally, the stability of the Trip-BTDA-PI membrane over time was studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...