Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 177: 106381, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38776758

ABSTRACT

Aspect Sentiment Triple Extraction (ASTE), a subtask of fine-grained sentiment analysis, aims to extract aspect terms, opinion terms, and their corresponding sentiment polarities from sentences. Previous methods often enumerated all possible spans of aspects and opinions as candidate spans that contain many invalid and irrelevant spans. This made the model training and prediction more difficult due to noised spans, leading to poor performance. To address this issue, we first propose a novel span-level approach that explicitly considers prior grammatical knowledge to generate possible candidate spans by part-of-speech filtering. In this way, our approach can make the model easier to be trained and achieve higher performance at the test stage. Besides, the quality of span-level representation of aspects and opinions is crucial for predicting their sentiment relation. To build a high-quality span-level representation of aspects and opinions, we first incorporate the contextual embedding of the entire sequence into span-level representations. Then, we introduce an auxiliary loss based on contrastive learning to make a more compact representation of the same polarities. Experimental evaluations on the 14Lap, 14Res, 15Res, and 16Res datasets demonstrate the effectiveness of our model, achieving state-of-the-art performance in span-based triplet extraction.


Subject(s)
Natural Language Processing , Humans , Neural Networks, Computer , Machine Learning , Algorithms , Speech
2.
Sensors (Basel) ; 23(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38067950

ABSTRACT

Traditional Convolutional Neural Network (ConvNet, CNN)-based image super-resolution (SR) methods have lower computation costs, making them more friendly for real-world scenarios. However, they suffer from lower performance. On the contrary, Vision Transformer (ViT)-based SR methods have achieved impressive performance recently, but these methods often suffer from high computation costs and model storage overhead, making them hard to meet the requirements in practical application scenarios. In practical scenarios, an SR model should reconstruct an image with high quality and fast inference. To handle this issue, we propose a novel CNN-based Efficient Residual ConvNet enhanced with structural Re-parameterization (RepECN) for a better trade-off between performance and efficiency. A stage-to-block hierarchical architecture design paradigm inspired by ViT is utilized to keep the state-of-the-art performance, while the efficiency is ensured by abandoning the time-consuming Multi-Head Self-Attention (MHSA) and by re-designing the block-level modules based on CNN. Specifically, RepECN consists of three structural modules: a shallow feature extraction module, a deep feature extraction, and an image reconstruction module. The deep feature extraction module comprises multiple ConvNet Stages (CNS), each containing 6 Re-Parameterization ConvNet Blocks (RepCNB), a head layer, and a residual connection. The RepCNB utilizes larger kernel convolutions rather than MHSA to enhance the capability of learning long-range dependence. In the image reconstruction module, an upsampling module consisting of nearest-neighbor interpolation and pixel attention is deployed to reduce parameters and maintain reconstruction performance, while bicubic interpolation on another branch allows the backbone network to focus on learning high-frequency information. The extensive experimental results on multiple public benchmarks show that our RepECN can achieve 2.5∼5× faster inference than the state-of-the-art ViT-based SR model with better or competitive super-resolving performance, indicating that our RepECN can reconstruct high-quality images with fast inference.

3.
Article in English | MEDLINE | ID: mdl-37585330

ABSTRACT

Popularity bias, as a long-standing problem in recommender systems (RSs), has been fully considered and explored for offline recommendation systems in most existing relevant researches, but very few studies have paid attention to eliminate such bias in online interactive recommendation scenarios. Bias amplification will become increasingly serious over time due to the existence of feedback loop between the user and the interactive system. However, existing methods have only investigated the causal relations among different factors statically without considering temporal dependencies inherent in the online interactive recommendation system, making them difficult to be adapted to online settings. To address these problems, we propose a novel counterfactual interactive policy learning (CIPL) method to eliminate popularity bias for online recommendation. It first scrutinizes the causal relations in the interactive recommender models and formulates a novel temporal causal graph (TCG) to guide the training and counterfactual inference of the causal interactive recommendation system. Concretely, TCG is used to estimate the causal relations of item popularity on prediction score when the user interacts with the system at each time during model training. Besides, it is also used to remove the negative effect of popularity bias in the test stage. To train the causal interactive recommendation system, we formulated our CIPL by the actor-critic framework with an online interactive environment simulator. We conduct extensive experiments on three public benchmarks and the experimental results demonstrate that our proposed method can achieve the new state-of-the-art performance.

4.
Article in English | MEDLINE | ID: mdl-37126637

ABSTRACT

Since math word problem (MWP) solving aims to transform natural language problem description into executable solution equations, an MWP solver needs to not only comprehend the real-world narrative described in the problem text but also identify the relationships among the quantifiers and variables implied in the problem and maps them into a reasonable solution equation logic. Recently, although deep learning models have made great progress in MWPs, they ignore the grounding equation logic implied by the problem text. Besides, as we all know, pretrained language models (PLM) have a wealth of knowledge and high-quality semantic representations, which may help solve MWPs, but they have not been explored in the MWP-solving task. To harvest the equation logic and real-world knowledge, we propose a template-based contrastive distillation pretraining (TCDP) approach based on a PLM-based encoder to incorporate mathematical logic knowledge by multiview contrastive learning while retaining rich real-world knowledge and high-quality semantic representation via knowledge distillation. We named the pretrained PLM-based encoder by our approach as MathEncoder. Specifically, the mathematical logic is first summarized by clustering the symbolic solution templates among MWPs and then injected into the deployed PLM-based encoder by conducting supervised contrastive learning based on the symbolic solution templates, which can represent the underlying solving logic in the problems. Meanwhile, the rich knowledge and high-quality semantic representation are retained by distilling them from a well-trained PLM-based teacher encoder into our MathEncoder. To validate the effectiveness of our pretrained MathEncoder, we construct a new solver named MathSolver by replacing the GRU-based encoder with our pretrained MathEncoder in GTS, which is a state-of-the-art MWP solver. The experimental results demonstrate that our method can carry a solver's understanding ability of MWPs to a new stage by outperforming existing state-of-the-art methods on two widely adopted benchmarks Math23K and CM17K. Code will be available at https://github.com/QinJinghui/tcdp.

SELECTION OF CITATIONS
SEARCH DETAIL
...