Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr Sci ; 54(10): 1727-1734, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27729338

ABSTRACT

Poly(N-isopropylacrylamide-co-hexanediol diacrylate-co-ethylene dimethacrylate) [poly(NIPAAm-co-HDDA-co-EDMA)] monolithic column was prepared via in situ polymerization reaction. In order to investigate the porous properties of the monoliths prepared, the morphology was characterized by the scanning electron microscopy; the chemical group of the monolithic column was confirmed by a Fourier transform infrared spectroscopy method. The surface area was 39.1 m2/g by the nitrogen adsorption-desorption experiment. With methanol as the mobile phase, the permeability of the monolithic column was calculated as 3.2330 × 10-14 m2 Then it was used as the stationary phase of high performance liquid chromatography. The results indicted that poly(NIPAAm-co-HDDA-co-EDMA) monolithic column was good to separate small molecules by controlling the temperature. Column efficiency for p-chloronitrobenzene was 4,680 plates/m. Repeatability was defined by determining run-to-run and column-to-column variation of the retention times of aromatic compounds, expressed as relative standard deviation (RSD = standard deviation/mean × 100%), and the values were <0.58% and 3.1%, respectively.

2.
J Sep Sci ; 38(12): 2101-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25864707

ABSTRACT

An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography.

3.
J Chromatogr Sci ; 53(4): 531-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25234385

ABSTRACT

A novel organic monolithic stationary phase was prepared for high-performance liquid chromatography (HPLC) by in situ copolymerization. In which, triallyl isocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) in a binary porogenic solvent consisting of polyethylene glycol 200 and 1, 2-propanediol were used. The resultant monoliths with different column properties (e.g., morphology and pressure) were optimized by adjusting the ratio of TMPTA/TAIC and the composition of porogenic solvent. The resulting poly(TAIC-co-TMPTA) monolith showed a relatively homogeneous structure, good permeability and mechanical stability. The chemical group of the monolith was assayed by the infrared spectra method, the morphology of monolithic material was studied by scanning electron microscopy and the pore size distribution was determined by a mercury porosimeter. A series of small molecules were used to evaluate the column performance in terms of hydrophobic mode. At an optimized flow rate of 1.0 mL min(-1), the theoretical plate number of analyte was >15,000 plates m(-1). These applications demonstrated that the monoliths could be successfully used as the stationary phase in conjunction with HPLC to separate small molecules from the mixture.


Subject(s)
Acrylates/chemistry , Acrylates/chemical synthesis , Chromatography, High Pressure Liquid/instrumentation , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Polymerization , Porosity , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...