Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Appl Radiat Isot ; 210: 111361, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815446

ABSTRACT

In the nuclear spectrum analysis processing, spectrum smoothing can remove the statistical fluctuation in the spectrum, which is beneficial for peak detection and peak area calculation. In this work, a spectrum smoothing algorithm is proposed based on digital Sallen-Key filter, which contains four parameters (m, n, k, D). The amplitude-frequency response curve of Sallen-Key filter is deduced and the filtering performance is analyzed. Meanwhile, the effects of the four parameters on the shape of the smoothed spectrum are explored: D affects the counts and peak areas of the spectrum, and the peak area can be corrected by the peak area correction function S'. The parameters of m, n and k affect the peak position after smoothing, making the peak position shift to the right, and the peak position correction function P' can be used to correct the peak position, when n¿2, the spectrum data appear negative after smoothing, when k¿2, the smoothed spectrum broadening degree is greater than 20%. Smoothness (R), noise smoothing factor (NSF), spectrum count ratio before and after smoothing (PER), and comprehensive evaluation factor (Q) are used to evaluate the smoothing effect of the algorithm. The parameters of the algorithm are optimally selected: about the gamma spectrum of 137Cs and 60Co, the optimal parameters are m=1.5 n=2 k=2 D=1, about the characteristic X-ray spectrum of Fe and quasi-geological sample (TiMnFeNiCuZn), the optimal parameters are m=1.1 n=1.1 k=1.3 D=1. Based on Sallen-Key smoothing method, Fourier transform method, Gaussian function method, wavelet transformation method, center of gravity method and least squares method, the gamma spectrum of 137Cs is smoothed and denoised in this paper. The results show that the Sallen-Key method has better spectrum denoising effect (R=0.6056) and comprehensive performance indicators (Q=0.6104), which can be further applied for the smoothing of nuclear spectrum data.

2.
Article in English | MEDLINE | ID: mdl-38796330

ABSTRACT

The purpose of this paper was to retrospectively assess the local factors that are likely to be associated with the risks for one-year dental implant loss.A retrospective study was designed and implemented. The sample consisted of patients who underwent an implant loss or removal caused by peri-implantitis or infection after prosthesis loading. The chi-squared test and generalised estimating equations (GEE) were used to explore the potential risk factors for one-year implant loss. A total of 279 patients with 287 failed implants were enrolled in this study. Immediate implant placement exhibited a 3.373 (95% CI: 1.652 to 6.886) significantly increased risk to experience one-year implant loss than early and late implant placement (p = 0.001). In addition, implants loaded during a healing period fewer than two months after implant placement were at 18.139 (95% CI: 8.925 to 36.866) significantly higher risk of one-year implant loss when compared with those that loaded within more than two months after implant placement (p < 0.001). Smokers were 1.866 (OR = 1.866,95% CI: 0.993 to 3.510) times as high risk for one-year implant loss as non-smokers, but there were no significant statistical differences (p = 0.053). Immediate implant placement and early implant loading were considered risk factors for one-year implant loss.

3.
Analyst ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819086

ABSTRACT

Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated. In this study, two in vitro microfluidic models for culturing ECs are proposed to reproduce blood pressure (BP) and wall shear stress (WSS) on the arterial endothelium while using these medical devices. The layout and parameters of the two microfluidic systems were optimized based on the principle of hemodynamic similarity to efficiently simulate physiological conditions. Moreover, the unique design of the double-pump and double afterload systems could successfully reproduce the working mode of CPDs in an in vitro microfluidic system. The performance of the two systems was verified by numerical simulations and in vitro experiments. BP and WSS under HF, CFVAD in pulsatile modes, and CPD were reproduced accurately in the systems, and these induced signals improved the expression of Ca2+, NO, and reactive oxygen species in ECs, proving that CPD may be effective in normalizing endothelial function and replacing CFVAD to a certain extent to treat non-severe HF. This method offers an important tool for the study of cell mechanobiology and a key experimental basis for exploring the potential value of mechanical circulatory support devices in reducing adverse events and improving outcomes in the treatment of HF in the future.

4.
Lab Chip ; 24(9): 2428-2439, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38625094

ABSTRACT

Rotary blood pumps (RBPs) operating at a constant speed generate non-physiologic blood pressure and flow rate, which can cause endothelial dysfunction, leading to adverse clinical events in peripheral blood vessels and other organs. Notably, pulsatile working modes of the RBP can increase vascular pulsatility to improve arterial endothelial function. However, the laws and related mechanisms of differentially regulating arterial endothelial function under different pulsatile working modes are still unclear. This knowledge gap hinders the optimal selection of the RBP working modes. To address these issues, this study developed a multi-element in vitro endothelial cell culture system (ECCS), which could realize in vitro cell culture effectively and accurately reproduce blood pressure, shear stress, and circumferential strain in the arterial endothelial microenvironment. Performance of this proposed ECCS was validated with numerical simulation and flow experiments. Subsequently, this study investigated the effects of four different pulsation frequency modes that change once every 1-4-fold cardiac cycles (80, 40, 80/3, and 20 cycles per min, respectively) of the RBP on the expression of nitric oxide (NO) and reactive oxygen species (ROS) in endothelial cells. Results indicated that the 2-fold and 3-fold cardiac cycles significantly increased the production of NO and prevented the excessive generation of ROS, potentially minimizing the occurrence of endothelial dysfunction and related adverse events during the RBP support, and were consistent with animal study findings. In general, this study may provide a scientific basis for the optimal selection of the RBP working modes and potential treatment options for heart failure.


Subject(s)
Cell Culture Techniques , Pulsatile Flow , Humans , Cell Culture Techniques/instrumentation , Hemodynamics , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Heart-Assist Devices , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lab-On-A-Chip Devices , Equipment Design , Human Umbilical Vein Endothelial Cells/metabolism , Microfluidic Analytical Techniques/instrumentation , Cells, Cultured
5.
Comput Methods Programs Biomed ; 250: 108191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677079

ABSTRACT

BACKGROUND AND OBJECTIVE: Enhanced external counterpulsation (EECP) is a mechanically assisted circulation technique widely used in the rehabilitation and management of ischemic cardiovascular diseases. It contributes to cardiovascular functions by regulating the afterload of ventricle to improve hemodynamic effects, including increased diastolic blood pressure at aortic root, increased cardiac output and enhanced blood perfusion to multiple organs including coronary circulation. However, the effects of EECP on the coupling of the ventricle and the arterial system, termed ventricular-arterial coupling (VAC), remain elusive. We aimed to investigate the acute effect of EECP on the dynamic interaction between the left ventricle and its afterload of the arterial system from the perspective of ventricular output work. METHODS: A neural network assisted optimization algorithm was proposed to identify the ordinary differential equation (ODE) relation between aortic root blood pressure and flow rate. Based on the optimized order of ODE, a lumped parameter model (LPM) under EECP was developed taking into consideration of the simultaneous action of cardiac and EECP pressure sources. The ventricular output work, in terms of aortic pressure and flow rate cooperated with the LPM, was used to characterize the VAC of ventricle and its afterload. The VAC subjected to the principle of minimal ventricular output work was validated by solving the Euler-Poisson equation of cost function, ultimately determining the waveforms of aortic pressure and flow rate. RESULTS: A third-order ODE can precisely describe the hemodynamic relationship between aortic pressure and flow rate. An optimized dual-source LPM with three energy-storage elements has been constructed, showing the potential in probing VAC under EECP. The LPM simulation results demonstrated that the VAC in terms of aortic pressure and flow rate yielded to the minimal ventricular output work under different EECP pressures. CONCLUSIONS: The ventricular-arterial coupling under EECP is subjected to the minimal ventricular output work, which can serve as a criterion for determining aortic pressure and flow rate. This study provides insight for the understanding of VAC and has the potential in characterizing the performance of the ventricular and arterial system under EECP.


Subject(s)
Algorithms , Counterpulsation , Heart Ventricles , Hemodynamics , Models, Cardiovascular , Humans , Counterpulsation/methods , Cardiac Output , Arteries/physiology , Blood Pressure , Computer Simulation , Aorta/physiology , Neural Networks, Computer
6.
Nat Commun ; 15(1): 2134, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459008

ABSTRACT

Dynamic luminescence behavior by external stimuli, such as light, thermal field, electricity, mechanical force, etc., endows the materials with great promise in optoelectronic applications. Upon thermal stimulus, the emission is inevitably quenched due to intensive non-radiative transition, especially for phosphorescence at high temperature. Herein, we report an abnormal thermally-stimulated phosphorescence behavior in a series of organic phosphors. As temperature changes from 198 to 343 K, the phosphorescence at around 479 nm gradually enhances for the model phosphor, of which the phosphorescent colors are tuned from yellow to cyan-blue. Furthermore, we demonstrate the potential applications of such dynamic emission for smart dyes and colorful afterglow displays. Our results would initiate the exploration of dynamic high-temperature phosphorescence for applications in smart optoelectronics. This finding not only contributes to an in-depth understanding of the thermally-stimulated phosphorescence, but also paves the way toward the development of smart materials for applications in optoelectronics.

7.
Phytomedicine ; 128: 155419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522314

ABSTRACT

BACKGROUND: Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE: The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS: In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/ß-catenin pathway were detected in vivo and in vitro. RESULTS: Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/ß-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION: These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/ß-catenin pathway and the inhibition of inflammatory responses.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Drugs, Chinese Herbal , Hepatic Encephalopathy , Thioacetamide , Wnt Signaling Pathway , Animals , Drugs, Chinese Herbal/pharmacology , Hepatic Encephalopathy/drug therapy , Male , Wnt Signaling Pathway/drug effects , Blood-Brain Barrier/drug effects , Mice , Carbon Tetrachloride , Cell Line , Mice, Inbred C57BL
8.
BMC Public Health ; 24(1): 343, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302930

ABSTRACT

BACKGROUND: Little was known about the relationship between perceived neighborhood environment and depression among residents living in mega-communities. Furthermore, the mediating effects of physical activity (PA) and anxiety in this relationship have not been investigated. Thus, this study aimed to comprehensively examine the association between perceived neighborhood environment and depression among residents living in mega-communities, and test whether PA and anxiety mediated the association. METHODS: A cross-sectional study on perceived neighborhood environment and depression was conducted among individuals who lived in mega-communities (n = 665) in Guiyang, China from July to August 2022. Perceived neighborhood environment was assessed from the following six aspects: traffic, building quality, accessibility, neighborhood, indoor, and pollution. Depression was measured by the Patients Health Questionnaire-9. Structural equation model was used to evaluate the association between perceived neighborhood environment and depression, and test the mediating effect of PA and anxiety in this association. RESULTS: We found that neighborhood (ß = -0.144, p = 0.002) and PA (ß = -0.074, p < 0.001) were both negatively associated with depression, while anxiety was positively associated with depression (ß = 0.447, p < 0.001). Married residents were less likely to experience depression than residents of other marital status. PA played a mediator role in the relationship between accessibility and depression (ß = 0.014, p = 0.033). PA mediated the relationship between neighborhood and depression (ß = -0.032, p = 0.015). The mediating effect of anxiety in the relationship between perceived neighborhood environment and depression was not significant. CONCLUSIONS: This study demonstrated that neighborhood, which was assessed by satisfaction with safety, hygiene, parking, greening, lighting, and building shape, was negatively associated with depression, and PA mediated the relationship.


Subject(s)
Depression , Exercise , Humans , Cross-Sectional Studies , Depression/epidemiology , China/epidemiology , Residence Characteristics , Neighborhood Characteristics
9.
Environ Pollut ; 346: 123532, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38365075

ABSTRACT

Ozone has been reported to increase despite nitrogen oxides reductions during the COVID-19 pandemic, and ozone formation needs to be revisited using volatile organic compounds (VOCs), which are rarely measured during the pandemic. Here, a total of 98 VOCs species were monitored in an economy-active city in China from January 2021 to August 2022 to assess contributions to ozone formation during the pandemic. Total VOCs concentrations were 35.55 ± 21.47 ppb during the entire period, among which alkanes account for the largest fraction (13.78 ppb, 38.0%), followed by aromatics (6.16 ppb, 16.8%) and oxygenated VOCs (OVOCs, 5.69 ppb, 15.7%). Most VOCs groups (e.g., alkenes, OVOCs) and individual species (e.g., isoprene, methyl vinyl ketone) display obvious seasonal and diurnal variations, which are related to their sources and reactivities. No weekend effects of VOCs suggest limited influences from traffic emissions during pandemic. Aromatics and alkenes are the major contributors (39% and 33%) to ozone formation potential, largely driven by o/m/p-xylene (21%), ethylene (15%), toluene (9%). Secondary organic aerosol formation potential is dominated by toluene (>50%) despite its low proportion (5%). Further inclusion of VOCs and meteorology in the Random Forest model shows good ozone prediction performance (R2 = 0.77-0.86, RMSE = 11.95-19.91 µg/m3, MAE = 8.89-14.58 µg/m3). VOCs and NO2 contribute >50% of total importance with the largest difference in importance ratio of VOCs/NO2 in the summer and winter, implying ozone formation regime may vary. No seasonal variations in importance of meteorology are observed, while importance of other variables (e.g., PM2.5) is highest in the summer. This work identifies critical VOCs groups and species for ozone formation during the pandemic, and demonstrates the feasibility of machine learning algorithms in elucidation of ozone formation mechanisms.


Subject(s)
Air Pollutants , COVID-19 , Ozone , Volatile Organic Compounds , Xylenes , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Pandemics , Ozone/analysis , Random Forest , Nitrogen Dioxide , Toluene , Alkenes , China , Environmental Monitoring
10.
Ann Surg ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258584

ABSTRACT

OBJECTIVE: To assess short-term and long-term outcomes following robotic enucleation (REn) of tumors in the proximal pancreas. BACKGROUND: Despite the advantages of preserving function via pancreatic enucleation, controversies persist, since this can be associated with severe complications, such as clinically relevant postoperative pancreatic fistula, especially when performed near the main pancreatic duct. The safety and efficacy of REn in this context remain largely unknown. METHODS: A retrospective analysis was performed of all patients who underwent REn for benign and low-grade malignant neoplasms in the pancreatic head and uncinate process between January 2005 and December 2021. Clinicopathologic, perioperative, and long-term outcomes were compared with a similar open enucleation (OEn) group. RESULTS: Of 146 patients, 92 underwent REn with a zero conversion-to-open rate. REn was superior to OEn in terms of shorter operative time (90.0 minutes vs 120.0 minutes, P<0.001), decreased blood loss (20.0 mL vs 100.0 min, P=0.001), and lower clinically relevant postoperative pancreatic fistula rate (43.5% vs 61.1%, P=0.040). Bile leakage rate, major morbidity, 90-day mortality, and length of hospital stay were comparable between groups. No post-REn grade C POPF or grade IV/V complication was identified. Subgroup analyses for uncinate process tumors and proximity to the main pancreatic duct did not demonstrate inferior postoperative outcomes. In a median follow-up period of 50 months, REn outcomes were comparable to OEn regarding recurrence rate and pancreatic endocrine or exocrine function. CONCLUSIONS: REn for pancreatic head and uncinate process tumors improved clinically relevant outcomes without increased major complications compared to OEn, while demonstrating comparable long-term oncological and functional outcomes.

11.
J Ethnopharmacol ; 321: 117432, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37992880

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY: This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS: We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS: According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS: We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Osteoarthritis , Humans , Inflammasomes , Medicine, Chinese Traditional , NLR Family, Pyrin Domain-Containing 3 Protein , Arthritis, Rheumatoid/drug therapy , Osteoarthritis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use
12.
Angew Chem Int Ed Engl ; 63(8): e202316706, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38126129

ABSTRACT

Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge. Herein, we synthesized a novel all-visible-light-driven photoswitch, TPAP-DTE, by facilely endcapping the dithienylethene (DTE) core with triphenylamine phenyl (TPAP) groups. Owing to the electron-donating conjugation effect of TPAP, the open-form TPAP-DTE responds strongly to short-wavelength visible lights with considerable photocyclization quantum yields and molar absorption coefficient. Upon 405 nm visible-light irradiation, TPAP-DTE achieves a ring-closure reaction yield exceeding 96.3 % (confirmed by both nuclear magnetic resonance spectroscopy and high-performance liquid chromatography). Its ring-opening reaction yield is 100 % upon irradiation with long-wavelength visible light. TPAP-DTE could be regarded as a bidirectional "quasi"-quantitative conversion molecular switch. Furthermore, TPAP-DTE exhibits robust fatigue resistance over 100 full photoswitching cycles and great anti-aging property under 85 °C and 85 % humidity for at least 1000 h. Consequently, its rewritable QR-code, multilevel data storage, and anti-counterfeiting/encryption applications are successfully demonstrated exclusively using visible lights, positioning TPAP-DTE as a highly promising medium for information recording.

13.
Chemosphere ; 346: 140615, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931712

ABSTRACT

Nitrogen dioxide (NO2) plays a critical role in terms of air quality, human health, ecosystems, and its impact on climate change. While the crucial roles of the vertical structure of NO2 have been acknowledged for some time, there is currently limited knowledge about this aspect in China. The Geostationary Environment Monitoring Spectrometer (GEMS) is the world's first geostationary satellite instrument capable of measuring the hourly columnar amount of NO2. The study presented here introduces the use of mixing height for NO2 in the atmosphere. A thorough examination of spatiotemporal variations in the mixing height of NO2 was conducted using data from both the GEMS and ground-based air quality monitoring networks. A random forest model based on machine learning techniques was utilized to examine how meteorological parameters affect the mixing height of NO2. The results of our study reveal a notable seasonal fluctuation in the mixing height of NO2, with the highest values observed during the summer and the lowest values during the winter. Additionally, there was an increasing diurnal trend from early morning to mid-afternoon. Moreover, the study discovered elevated NO2 mixing heights in the dry regions of northern China. The results also indicated a positive correlation between the mixing height of NO2 and temperature and wind speed, while negative associations were found with relative humidity and air pressure. The machine learning model's predicted NO2 mixing heights were in good agreement with the measurement-based outcomes, as evidenced by a coefficient of determination (R2) value of 0.96 (0.84 for the 10-fold cross-validation). These findings emphasize the noteworthy influence of meteorological variables on the vertical distribution of NO2 in the atmosphere and enhance our comprehension of the three-dimensional variations in NO2.


Subject(s)
Air Pollutants , Air Pollution , Humans , Nitrogen Dioxide/analysis , Air Pollutants/analysis , Ecosystem , Air Pollution/analysis , Environmental Monitoring/methods , China , Machine Learning
14.
Environ Toxicol ; 39(4): 2285-2303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148718

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) methylation is considered to induce tumor cell proliferation, migration, and apoptosis. Understanding the mechanism of m6A-related lncRNAs in the development of lung adenocarcinoma (LUAD) may help predict prognosis. METHODS: m6A-related lncRNAs related to lung cancer were identified and combined with the MeRIP-Seq dataset. The consensus clustering method was utilized to divide LUAD patients, and prognostic model was constructed using the Lasso Cox algorithm. The cluster profiler package was used for gene ontology and KEGG enrichment. The proportion of immune infiltration was estimated using the CIBERSORT algorithm. The decision tree was constructed by the rpart package, and nomograms were built by the rms package. The Connectivity Map database was analyzed for the therapeutic effects of small molecule drugs for LUAD. In addition, qPCR, colony formation and transwell assays were performed to validate functions of m6A-associated lncRNAs. RESULTS: Nineteen m6A-modified lncRNAs in LUAD were identified. LUAD patients were divided into two categories based on the expression of 19 m6A-related lncRNAs. Cluster 2 patients had better antigen production and expression, while naive B cells, plasma cells, and activated NK cells were lower in cluster 1. Nine m6A-related lncRNAs were selected to establish a risk model for evaluating the prognosis of LUAD patients. The high-risk group had higher tumor mutational burden and lower TIDE scores with more gamma delta T cells and neutrophils. Nomograms showed that the prognostic model had predominant predictive ability for LUAD patients based on the risk score analyzed by the decision tree model. Benzo(a)pyrene and neurodazine might improve the prognosis of LUAD patients. The qRT-PCR results confirmed the reliability of the analytical results. CONCLUSION: The establishment of a prognostic model of m6A-related lncRNAs can independently predict overall survival in LUAD and may help to develop personalized immunotherapy strategies.


Subject(s)
Adenine/analogs & derivatives , Adenocarcinoma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Reproducibility of Results , Biomarkers , Lung
15.
J Transl Med ; 21(1): 872, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38037073

ABSTRACT

BACKGROUND: Although the molecular features of pancreatic ductal adenocarcinoma (PDAC) have been well described, the impact of detailed gene mutation subtypes on disease progression remained unclear. This study aimed to evaluate the impact of different TP53 mutation subtypes on clinical characteristics and outcomes of patients with PDAC. METHODS: We included 639 patients treated with PDAC in Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine between Jan 2019 and Jun 2021. The genomic alterations of PDAC were analyzed, and the association of TP53 mutation subtypes and other core gene pathway alterations with patients' clinical characteristics were evaluated by Chi-squared test, Kaplan-Meier method and Cox regression model. RESULTS: TP53 missense mutation was significantly associated with poor differentiation in KRASmut PDAC (50.7% vs. 36.1%, P = 0.001). In small-sized (≤ 2 cm) KRASmut tumors, significantly higher LNs involvement (54.8% vs. 23.5%, P = 0.010) and distal metastic rate (20.5% vs. 2.9%, P = 0.030) were observed in those with TP53 missense mutation instead of truncating mutation. Compared with TP53 truncating mutation, missense mutation was significantly associated with reduced DFS (6.6 [5.6-7.6] vs. 9.2 [5.2-13.3] months, HR 0.368 [0.200-0.677], P = 0.005) and OS (9.6 [8.0-11.1] vs. 18.3 [6.7-30.0] months, HR 0.457 [0.248-0.842], P = 0.012) in patients who failed to receive chemotherapy, while higher OS (24.2 [20.8-27.7] vs. 23.8 [19.0-28.5] months, HR 1.461 [1.005-2.124], P = 0.047) was observed in TP53missense cases after chemotherapy. CONCLUSIONS: TP53 missense mutation was associated with poor tumor differentiation, and revealed gain-of-function properties in small-sized KRAS transformed PDAC. Nonetheless, it was not associated with insensitivity to chemotherapy, highlighting the neoadjuvant therapy before surgery as the potential optimized strategy for the treatment of a subset of patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Mutation, Missense/genetics , Gain of Function Mutation , China , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Mutation/genetics , Tumor Suppressor Protein p53/genetics
16.
Huan Jing Ke Xue ; 44(11): 5964-5974, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973081

ABSTRACT

Based on the PM1 mass concentration data from all the air quality monitoring stations in China from 2014 to 2017, the temporal and spatial distribution characteristics of PM1 concentration were studied using the time series statistical and spatial hierarchical clustering methods, and the PM1 spatiotemporal evolution characteristics were revealed. Combined with AOD data of the MODIS remote-sensing satellite, the temporal and spatial variation in PM1-AOD correlation was analyzed on a fine scale. The results showed that, from 2014 to 2017, the annual average PM1 concentration in China decreased yearly, the seasonal PM1 concentration showed the characteristics of "high in winter and low in summer," and the monthly average PM1 concentration showed a "U"-shaped variation. An "M"-shaped PM1 variation pattern was presented before and after the holidays. Weekly variation showed that high PM1 values occurred on Mondays and Fridays, and low ones occurred on Sundays. Based on the spatial clustering method, the national average annual PM1 concentration in China was divided into seven categories, and the overall spatial distribution pattern was "high in the east and low in the west and high in the north and low in the south." The highest and the lowest values of average PM1 concentration occurred in central China(54.59 µg·m-3) and in Xinjiang-Qinghai-Xizang(11.37 µg·m-3), respectively. The PM1-AOD relationship was positively correlated as a whole, the highest correlation coefficient was 0.55 in central China, and the lowest value was 0.36 in central and southern China.

17.
Electrophoresis ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909658

ABSTRACT

Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.

18.
Front Immunol ; 14: 1254753, 2023.
Article in English | MEDLINE | ID: mdl-37954591

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, of which the leading cause of death is cardiovascular disease (CVD). The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) in RA decrease especially under hyperinflammatory conditions. It is conflictive with the increased risk of CVD in RA, which is called "lipid paradox". The systemic inflammation may explain this apparent contradiction. The increased systemic proinflammatory cytokines in RA mainly include interleukin-6(IL-6)、interleukin-1(IL-1)and tumor necrosis factor alpha(TNF-α). The inflammation of RA cause changes in the subcomponents and structure of HDL particles, leading to a weakened anti-atherosclerosis function and promoting LDL oxidation and plaque formation. Dysfunctional HDL can further worsen the abnormalities of LDL metabolism, increasing the risk of cardiovascular disease. However, the specific mechanisms underlying lipid changes in RA and increased CVD risk remain unclear. Therefore, this article comprehensively integrates the latest existing literature to describe the unique lipid profile of RA, explore the mechanisms of lipid changes, and investigate the impact of lipid changes on cardiovascular disease.


Subject(s)
Arthritis, Rheumatoid , Cardiovascular Diseases , Dyslipidemias , Humans , Cardiovascular Diseases/etiology , Inflammation , Cholesterol, LDL , Tumor Necrosis Factor-alpha/metabolism
20.
Front Immunol ; 14: 1258765, 2023.
Article in English | MEDLINE | ID: mdl-38022540

ABSTRACT

Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Signal Transduction , Humans , Oncostatin M , Signal Transduction/physiology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Janus Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...