Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(39): 36471-36478, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810696

ABSTRACT

The nonisothermal thermal decomposition kinetics of 4,4'-azobis-1,2,4-triazole (ATRZ) at different heating rates (5, 10, 15, and 20 °C·min-1) were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) studies. The thermal decomposition kinetic parameters such as apparent activation energy (E) and pre-exponential factor (A) were calculated by the Kissinger, Ozawa, and Satava-Sestak methods. The E and A values calculated by the above three methods are very close, which are 391.1 kJ·mol-1/1034.92 s-1, 381.1 kJ·mol-1/1034.30 s-1, and 393.4 kJ·mol-1/1035.76 s-1, respectively. Then, the decomposition mechanism function of ATRZ is analyzed by the calculated results. The results show that the decomposition temperature of ATRZ is about 300 °C and the exothermic decomposition speed is fast. The decomposition pathway of ATRZ was analyzed by pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The thermal decomposition kinetic equation of the ATRZ was deduced.

2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685943

ABSTRACT

The synthesis of the new energetic material 4-amino-3-hydrazino-5-methyl-1,2,4-triazole, which shows excellent performance and reliable safety, has drawn attention recently. To fully characterize this material, a comprehensive analysis was performed using various techniques, including differential scanning calorimetry (DSC), infrared spectroscopy (IR), elemental analysis, and 1H and 13C NMR spectroscopy. Additionally, three compounds, 3, 5 and 9, were further characterized using single X-ray diffraction. The X-ray data suggested that extensive hydrogen bonds affect molecular structure by means of intermolecular interactions. In order to evaluate the explosive properties of these synthesized compounds, detonation pressures and velocities were calculated using EXPLO5 (V6.01). These calculations were carried out utilizing experimental data, including density and heat of formation. Among the explosives tested, compounds 7 and 8 exhibited zero oxygen balance and demonstrated exceptional detonation properties. Compound 7 achieved the highest recorded detonation pressure, at 34.2 GPa, while compound 8 displayed the highest detonation velocity, at 8887 m s-1.


Subject(s)
Explosive Agents , Salts , Animals , Calorimetry, Differential Scanning , Estrus , Ions
3.
Rice (N Y) ; 12(1): 10, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30820693

ABSTRACT

BACKGROUND: Oryza glumaepatula represents an important resource of genetic diversity that can be used to improve rice production. However, hybrid sterility severely restricts gene flow between Oryza species, and hinders the utilization of distant heterosis in hybrid rice breeding. RESULTS: In order to fully exploit the beneficial genes of O. glumaepatula and facilitate the conservation of these gene resources, a set of chromosome single-segment substitution lines (SSSLs) was developed using an indica variety HJX74 as the recurrent parent and an accession of O. glumaepatula as the donor parent. During the process of SSSLs development, S23, a locus conferring hybrid male sterility between O. sativa and O. glumaepatula, was identified and fine mapped to 11.54 kb and 7.08 kb genomic region in O. sativa and O. glumaepatula, respectively, encoding three and two candidate ORFs, respectively. qRT-PCR and sequence analysis excluded one common ORF as the candidate gene. In addition, hybrid male sterility caused by S23 was environment-sensitive, and could be observed only in natural short-day (NSD). CONCLUSION: Identification and candidate genes analysis of S23 in this study provides a valuable example to study the crosstalk between interspecific F1 hybrid male sterility and environment-conditioned male sterility in rice, facilitates reserving and utilizing favorable genes or alleles of wild Oryza species, and allows for a more efficient exploitation of distant heterosis in hybrid rice breeding.

SELECTION OF CITATIONS
SEARCH DETAIL
...