Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(50): 32267-32285, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376864

ABSTRACT

The Xihu Sag in the East China Sea Shelf Basin is a focus for hydrocarbon exploration and development. Hydrocarbons in the Xihu Sag are believed to have mainly originated from coals in the Paleogene Pinghu Formation (shortened as Pinghu coal). In this study, the hydrocarbon generation potential, origin of organic matter, and depositional setting of the Pinghu coal were analyzed by means of optical microscopic analysis, bulk organic geochemistry, and molecular geochemistry analysis. The results reveal that the maceral compositions of the Pinghu coal are characterized by a predominance of vitrinite (73.91-96.13%) with relatively high contents of liptinite (1.47-23.02%) and only minor amounts of inertinite (0-5.18%). Type II-III kerogen and high values of TOC (total organic carbon) (8.24-56.77%), EOM (extractable organic matter) (14 601-112 259 ppm), and HI (hydrogen index) (178.76-291.18 mg·HC/g·TOC) indicate that the Pinghu coal is both gas- and oil-prone and could not only generate but also expel hydrocarbons. The results of vitrinite reflectance (0.54-0.90%), Tmax (421-453 °C), and biomarker-related parameters, including CPI (carbon preference index) (1.10-1.61), OEP (odd-to-even predominance) (1.09-1.49), 22S/(22S + 22R) for C31 homohopane (0.59-0.62), and 22S/(22S + 22R) for C32 homohopane (0.57-0.60), suggest that these coaly source rocks have entered the hydrocarbon generation threshold, most of which have entered the expulsion threshold. Biomarker-related parameters of ∑n-C21-/∑n-C22+ (0.38-3.62), Pr/Ph (3.33-9.23), Pr/n-C17 (1.91-14.88), Ph/n-C18 (0.35-1.83), 22S/(22S+22R) of C31 homohopane (0.59-0.62), 22S/(22S + 22R) of C32 homohopane (0.57-0.60), 1,2,7-TMN/1,3,7-TMN (0.74-14.39), and 1,2,5-TMN/1,3,6-TMN (2.22-21.07) suggest that organic matter in the Pinghu coal was deposited under relatively oxic peatland conditions characterized by a predominance of terrestrial higher plant input, especially the resin-rich Pinaceae and Taxodiaceae. The absence of combustion-derived PAHs indicates that neither vegetation fire nor peat fire occurred very frequently during the formation of peat. Areas in the Xihu sag with considerable thicknesses of coal should be paid particular attention for future hydrocarbon exploration. From a global perspective, Cenozoic coaly source rocks, which are characterized by a relatively high content of aliphatic components, should be paid special attention for their oil-prone properties related to the advent of conifer plants.

2.
Appl Biochem Biotechnol ; 172(4): 2218-26, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24347160

ABSTRACT

Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.


Subject(s)
Bioreactors/microbiology , Fermentation/physiology , Air , Temperature , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...