Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(12): 3171-3174, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37319054

ABSTRACT

Conventional polarization beam splitters (PBSs) suffer energy loss and signal distortion due to backscattering caused by disturbances. Topological photonic crystals provide backscattering immunity and anti-disturbance robustness transmission owing to the topological edge states. Here, we put forward a kind of dual-polarization air hole-type fishnet valley photonic crystal with a common bandgap (CBG). The Dirac points at the K point formed by different neighboring bands for transverse magnetic and transverse electric polarizations are drawn closer via changing the filling ratio of the scatterer. Then the CBG is constructed by lifting the Dirac cones for dual polarizations within a same frequency range. We further design a topological PBS using the proposed CBG via changing the effective refractive index at the interfaces which guide polarization-dependent edge modes. Based on these tunable edge states, the designed topological PBS (TPBS) achieves efficient polarization separation and is robust against sharp bends and defects, verified by simulation results. The TPBS's footprint is approximately 22.4 × 15.2 µ m 2, allowing high-density on-chip integration. Our work has potential application in photonic integrated circuits and optical communication systems.


Subject(s)
Optical Devices , Computer Simulation , Electricity , Photons , Retinal Cone Photoreceptor Cells
2.
Opt Express ; 30(18): 32590-32599, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242316

ABSTRACT

The emerging all-dielectric platform exhibits high-quality (Q) resonances governed by the physics of bound states in the continuum (BIC) that drives highly efficient nonlinear optical processes. Here we demonstrate the robust enhancement of third-(THG) and fifth-harmonic generation (FHG) from all-dielectric metasurfaces composed of four silicon nanodisks. Through the symmetry breaking, the genuine BIC transforms into the high-Q quasi-BIC resonance with tight field confinement for record high THG efficiency of 3.9 × 10-4 W-2 and FHG efficiency of 4.8 × 10-10 W-4 using a moderate pump intensity of 1 GW/cm2. Moreover, the quasi-BIC and the resonantly enhanced harmonics exhibit polarization-insensitive characteristics due to the special C4 arrangement of meta-atoms. Our results suggest the way for smart design of efficient and robust nonlinear nanophotonic devices.

3.
Opt Lett ; 47(20): 5377-5380, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36240367

ABSTRACT

We propose a width-tunable topological pseudospin-dependent waveguide (TPDW) which can manipulate the optical beam width using a heterostructure of all-dielectric photonic crystals (PhCs). The heterostructure can be realized by introducing a PhC featuring double Dirac cones into the other two PhCs with different topological indices. The topological pseudospin-dependent waveguide states (TPDWSs) achieved from the TPDW exhibit unidirectional transport and immunity against defects. As a potential application of our work, using these characteristics of TPDWSs, we further design a topological pseudospin-dependent beam expander which can expand a narrow beam into a wider one at the communication wavelength of 1.55 µm and is robust against three kinds of defects. The proposed TPDW with widely adjustable width can better dock with other devices to achieve stable and efficient transmission of light. Meanwhile, all-dielectric PhCs have negligible losses at optical wavelengths, which provides the prospect of broad application in photonic integrated devices.

4.
Opt Express ; 29(18): 29541-29549, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615062

ABSTRACT

Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at the subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we theoretically propose the magnetic dipole quasi-BIC resonance in asymmetric silicon nanobar metasurfaces to realize giant Goos-Hänchen (GH) shift enhancement by more than three orders of wavelength. In sharp contrast to GH shift based on the Brewster dip or transmission-type resonance, the maximum GH shift here is located at the reflection peak with unity reflectance, which can be conveniently detected in the experiment. By adjusting the asymmetric parameter of metasurfaces, the Q-factor and GH shift can be modulated accordingly. More interestingly, it is found that GH shift exhibits an inverse quadratic dependence on the asymmetric parameter. Furthermore, we theoretically design an ultrasensitive environmental refractive index sensor based on the quasi-BIC enhanced GH shift, with a maximum sensitivity of 1.5×107 µm/RIU. Our work not only reveals the essential role of BIC in engineering the basic optical phenomena but also suggests the way for pushing the performance limits of optical communication devices, information storage, wavelength division de/multiplexers, and ultrasensitive sensors.

5.
Opt Express ; 29(12): 18026-18036, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34154071

ABSTRACT

Enhancing the light-matter interactions in two-dimensional materials via optical metasurfaces has attracted much attention due to its potential to enable breakthrough in advanced compact photonic and quantum information devices. Here, we theoretically investigate a strong coupling between excitons in monolayer WS2 and quasi-bound states in the continuum (quasi-BIC). In the hybrid structure composed of WS2 coupled with asymmetric titanium dioxide nanobars, a remarkable spectral splitting and typical anticrossing behavior of the Rabi splitting can be observed, and such strong coupling effect can be modulated by shaping the thickness and asymmetry parameter of the proposed metasurfaces, and the angle of incident light. It is found that the balance of line width of the quasi-BIC mode and local electric field enhancement should be considered since both of them affect the strong coupling, which is crucial to the design and optimization of metasurface devices. This work provides a promising way for controlling the light-matter interactions in strong coupling regime and opens the door for the future novel quantum, low-energy, distinctive nanodevices by advanced meta-optical engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...