Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674099

ABSTRACT

In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection.


Subject(s)
Disease Resistance , Fusarium , Germination , Nanoparticles , Plant Diseases , Seedlings , Silicon Dioxide , Fusarium/drug effects , Silicon Dioxide/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Nanoparticles/chemistry , Germination/drug effects , Disease Resistance/drug effects , Seedlings/growth & development , Seedlings/drug effects , Seedlings/microbiology , Vigna/microbiology , Vigna/growth & development , Vigna/drug effects , Porosity
2.
Insects ; 15(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38249048

ABSTRACT

Solenopsis invicta, often known as the red imported fire ants (RIFAs), is a well-known global invasive ant species that can be found in agricultural, urban, and natural environments worldwide. Simultaneously, it also inhabits the soil. Biochar is generated by the pyrolysis of organic matter under high-temperature anoxic environments and widely used in agricultural ecosystems and soil amendment. However, to date, it remains unknown as to whether soil application of biochar has a negative effect on RIFAs. In our study, we investigated the toxicity and irritability effects of different amounts of biochar (0%, 1%, 2%, 5%, 10%, and 20%) introduced into the soil on red fire ants; upon comparison with the control soil (0% biochar), the application of 1%, 2%, and 5% biochar did not result in significantly different results. But the utilization of biochar at a concentration over 10% effectively repelled the RIFAs, resulting in their departure from the treated soils. High doses of biochar were able to cause death of red fire ants; the mortality rate of red fire ants reached 55.56% after 11 days of 20% biochar treatment. We also evaluated the effects of biochar on four behaviors of red fire ants, namely aggregation, walking, grasping, and attacking; 20% of the biochar treatment group reduced aggregation by 64.22% and this value was 55.22%, 68.44%, and 62.36% for walking, grasping, and attacking. Finally, we measured the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activity and malondialdehyde (MDA) content in red fire ants; the results showed that the activities of the three enzymes increased with the increase in biochar addition, which indicated that a high dose of biochar induced oxidative stress in red fire ants. Our results indicate that biochar has the potential to cause toxicity and repel red imported fire ants (RIFAs) in a manner that is dependent on the concentration. We propose that biochar could be utilized in the control and manufacturing of baits for red fire ant management. This work establishes a foundation for the prevention and management of red fire ants and the logical utilization of biochar.

3.
Talanta ; 191: 519-525, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30262093

ABSTRACT

A novel blue fluorescence nitrogen and cobalt(II) co-doped carbon dots (CDs) encapsulated in europium metal-organic frameworks (CDs@Eu-MOFs) were synthesized to form a ratiometric fluorescent sensor for the detection of Cr(VI). The CDs@Eu-MOFs were characterized by transmission electron microscopic (TEM), scanning electron microscopic (SEM), Fourier transform infrared (FT-IR) and X-ray powder diffraction (XRD) techniques. The as-prepared CDs@Eu-MOFs not only kept the fascinating optical properties of CDs and Eu3+ to give dual-emission but also had good stability in an aqueous solution. In the presence of Cr(VI), the fluorescence intensity of the CDs decreased and the intensity of the Eu-MOFs remained. Under optimized conditions, the synthesized CDs@Eu-MOFs showed high sensitivity and selectivity with a linear range from 2 to 100 µM and a detection limit of 0.21 µM for the detection of Cr(VI). The possible mechanism is discussed. Meanwhile, the fluorescence sensor was successfully utilized to detection of Cr(VI) in natural samples with good recoveries ranges.

4.
Org Biomol Chem ; 16(17): 3104-3108, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29645044

ABSTRACT

A nonmetal-catalyzed oxidative cyclization to achieve 2,5-disubstituted oxazoles from inexpensive and readily available substituted chalcone, (diacetoxyiodo)benzene (PIDA) and ammonium acetate (NH4OAc) at room temperature is described. The reaction forms a variety of 2,5-diaryloxazoles in good to excellent yields with broad substrate scope under mild conditions without the requirement of ligands and additional bases.

5.
J Org Chem ; 82(21): 11505-11511, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28922912

ABSTRACT

A rhodium-catalyzed intermolecular coupling between arylnitrones and diazo compounds by C-H activation/[4 + 1] annulation with a C(N2)-C(acyl) bond cleavage is reported, and 2,3-disubstituted NH indoles are directly synthesized in up to a 94% yield. A variety of functional groups are applicable to this reaction to give the corresponding products with high selectivity. Compared to other previously reported Rh(III)-catalyzed synthesis of homologous series, this method is simpler, more general, and more efficient.

SELECTION OF CITATIONS
SEARCH DETAIL
...