Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(5): e0272023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572984

ABSTRACT

Gut microbiota has demonstrated an increasingly important role in the onset and development of colorectal cancer (CRC). Nonetheless, the association between gut microbiota and KRAS mutation in CRC remains enigmatic. We conducted 16S rRNA sequencing on stool samples from 94 CRC patients and employed the linear discriminant analysis effect size algorithm to identify distinct gut microbiota between KRAS mutant and KRAS wild-type CRC patients. Transcriptome sequencing data from nine CRC patients were transformed into a matrix of immune infiltrating cells, which was then utilized to explore KRAS mutation-associated biological functions, including Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways. Subsequently, we analyzed the correlations among these KRAS mutation-associated gut microbiota, host immunity, and KRAS mutation-associated biological functions. At last, we developed a predictive random forest (RF) machine learning model to predict the KRAS mutation status in CRC patients, based on the gut microbiota associated with KRAS mutation. We identified a total of 26 differential gut microbiota between both groups. Intriguingly, a significant positive correlation was observed between Bifidobacterium spp. and mast cells, as well as between Bifidobacterium longum and chemokine receptor CX3CR1. Additionally, we also observed a notable negative correlation between Bifidobacterium and GOMF:proteasome binding. The RF model constructed using the KRAS mutation-associated gut microbiota demonstrated qualified efficacy in predicting the KRAS phenotype in CRC. Our study ascertained the presence of 26 KRAS mutation-associated gut microbiota in CRC and speculated that Bifidobacterium may exert an essential role in preventing CRC progression, which appeared to correlate with the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:proteasome binding. Furthermore, the RF model constructed on the basis of KRAS mutation-associated gut microbiota exhibited substantial potential in predicting KRAS mutation status in CRC patients.IMPORTANCEGut microbiota has emerged as an essential player in the onset and development of colorectal cancer (CRC). However, the relationship between gut microbiota and KRAS mutation in CRC remains elusive. Our study not only identified a total of 26 gut microbiota associated with KRAS mutation in CRC but also unveiled their significant correlations with tumor-infiltrating immune cells, immune-related genes, and biological pathways (Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways). We speculated that Bifidobacterium may play a crucial role in impeding CRC progression, potentially linked to the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:Proteasome binding. Furthermore, based on the KRAS mutation-associated gut microbiota, the RF model exhibited promising potential in the prediction of KRAS mutation status for CRC patients. Overall, the findings of our study offered fresh insights into microbiological research and clinical prediction of KRAS mutation status for CRC patients.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Machine Learning , Mutation , Proto-Oncogene Proteins p21(ras) , Humans , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gastrointestinal Microbiome/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Male , Female , RNA, Ribosomal, 16S/genetics , Middle Aged , Aged , Feces/microbiology , Bifidobacterium/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism
2.
J Transl Med ; 22(1): 142, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331839

ABSTRACT

BACKGROUND: Overweight is known to be an important risk factor for colorectal cancer (CRC), and the differences in intestinal flora among CRC patients with different BMI status have not been clearly defined. The purpose of this study was to elucidate the differences in the abundance, composition and biological function of intestinal flora in CRC patients with different BMI status. METHOD: A total of 170 CRC patients were included and grouped according to the BMI data of CRC patients. BMI ≥ 24 kg/m2 was defined as overweight group, and BMI within the range of 18.5-23.9 kg/m2 was defined as normal weight group. Preoperative stool collection of patients in both groups was used for 16S rRNA sequencing. Total RNA was extracted from 17 CRC tumor tissue samples for transcriptome sequencing, and then CIBERSORT algorithm was used to convert the transcriptome data into the relative content matrix of 22 kinds of immune cells, and the correlation between different intestinal flora and immune cells and immune-related genes under different BMI states was analyzed. Finally, we identified BMI-related differential functional pathways and analyzed the correlation between these pathways and differential intestinal flora. RESULT: There was no significant difference in α diversity and ß diversity analysis between overweight group and normal weight group. Partial least square discriminant analysis (PLS-DA) could divide the flora into two different clusters according to BMI stratification. A total of 33 BMI-related differential flora were identified by linear discriminant effect size analysis (LEfSe), among which Actinomyces, Desulfovibrio and Bacteroides were significantly enriched in overweight group. ko00514: Other types of O-glycan biosynthesis are significantly enriched in overweight group. There was a significant positive correlation between Clostridium IV and Macrophages M2 and T cells regulatory (Tregs). There was a significant negative correlation with Dendritic cells activated and T cells CD4 memory activated. CONCLUSIONS: The richness and diversity of intestinal flora of CRC patients may be related to different BMI status, and the enrichment of Actinomyces, Desulphurvibrio and Bacteroides may be related to overweight status of CRC patients. The tumor microenvironment in which BMI-related differential flora resides has different immune landscapes, suggesting that some intestinal flora may affect the biological process of CRC by regulating immune cell infiltration and immune gene expression, but further experiments are needed to confirm this.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Body Mass Index , RNA, Ribosomal, 16S/genetics , Overweight/complications , Overweight/genetics , Colorectal Neoplasms/complications , Colorectal Neoplasms/genetics , Tumor Microenvironment
3.
J Transl Med ; 21(1): 373, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291572

ABSTRACT

OBJECTIVE: The relationship between intestinal microbiome and colorectal cancer (CRC) progression is unclear. This study aims to identify the intestinal microbiome associated with CRC progression and construct predictive labels to support the accurate assessment and treatment of CRC. METHOD: The 192 patients included in the study were divided into stage I-II and stage III-IV CRC patients according to the pathological stages, and preoperative stools were collected from both groups for 16S rDNA sequencing of the intestinal microbiota. Pearson correlation and Spearman correlation coefficient analysis were used to analyze the differential intestinal microbiome and the correlation with tumor microenvironment and to predict the functional pathway. XGBoost model (XGB) and Random Forest model (RF) were used to construct the microbiome-based signature. The total RNA extraction from 17 CRC tumor simples was used for transcriptome sequencing. RESULT: The Simpson index of intestinal microbiome in stage III-IV CRC were significantly lower than those in stage I-II CRC. Proteus, Parabacteroides, Alistipes and Ruminococcus etc. are significantly enriched genus in feces of CRC patients with stage III-IV. ko00514: Other types of O - glycan biosynthesis pathway is relevant with CRC progression. Alistipes indistinctus was positively correlated with mast cells, immune activators IL-6 and IL6R, and GOBP_PROTEIN_FOLDING_IN_ENDOPLASMIC_RETICULUM dominantly. The Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed with 42 CRC progression-associated differential bacteria were effective in distinguishing CRC patients between stage I-II and stage III-IV. CONCLUSIONS: The abundance and diversity of intestinal microbiome may increase gradually with the occurrence and progression of CRC. Elevated fetal abundance of Proteus, Parabacteroides, Alistipes and Ruminococcus may contribute to CRC progression. Enhanced synthesis of O - glycans may result in CRC progression. Alistipes indistinctus may play a facilitated role in mast cell maturation by boosting IL-6 production. Alistipes indistinctus may work in the correct folding of endoplasmic reticulum proteins in CRC, reducing ER stress and prompting the survival and deterioration of CRC, which may owe to the enhanced PERK expression and activation of downstream UPR by Alistipes indistinctus. The CRC progression-associated differential intestinal microbiome identified in our study can be served as potential microbial markers for CRC staging prediction.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Interleukin-6 , Colorectal Neoplasms/pathology , Bacteroidetes/genetics , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Tumor Microenvironment
4.
Front Cell Infect Microbiol ; 13: 1098310, 2023.
Article in English | MEDLINE | ID: mdl-37249979

ABSTRACT

Objective: To identify differences between the composition, abundance, and biological function of the intestinal microbiome of patients with and without lymph-vascular invasion (LVI) colorectal cancer (CRC) and to construct predictive labels to support accurate assessment of LVI in CRC. Method: 134 CRC patients were included, which were divided into two groups according to the presence or absence of LVI, and their intestinal microbiomes were sequenced by 16SrRNA and analyzed for differences. The transcriptome sequencing data of 9 CRC patients were transformed into immune cells abundance matrix by CIBERSORT algorithm, and the correlation among LVI-associated differential intestinal microbiomes, immune cells, immune-related genes and LVI-associated differential GO items and KEGG pathways were analyzed. A random forest (RF) and eXtreme Gradient Boosting (XGB) model were constructed to predict the LVI of CRC patients based on the differential microbiome. Result: There was no significant difference in α-diversity and ß-diversity of intestinal microbiome between CRC patients with and without LVI (P > 0.05). Linear discriminant analysis Effect Size (LEfSe) analysis showed 34 intestinal microbiomes enriched in CRC patients of the LVI group and 5 intestinal microbiomes were significantly enriched in CRC patients of the non-lymph-vascular invasion (NLVI) group. The RF and XGB prediction models constructed with the top 15% of the LVI-associated differential intestinal microbiomes ranked by feature significance had good efficacy. Conclusions: There are 39 intestinal flora with significantly different species abundance between the LVI and NLVI groups. g:Alistipes.s:Alistipes_indistinctus is closely associated with colorectal cancer vascular invasion. LVI-associated differential intestinal flora may be involved in regulating the infiltration of immune cells in CRC and influencing the expression of immune-related genes. LVI-associated differential intestinal flora may influence the process of vascular invasion in CRC through a number of potential biological functions. RF prediction models and XGB prediction models constructed based on microbial markers of gut flora can be used to predict CRC-LVI conditions.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Biomarkers, Tumor/analysis , Feces/chemistry
5.
EPMA J ; 13(4): 671-697, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36505892

ABSTRACT

Background: The N7-methylguanosine modification (m7G) of the 5' cap structure in the mRNA plays a crucial role in gene expression. However, the relation between m7G and tumor immune remains unclear. Hence, we intended to perform a pan-cancer analysis of m7G which can help explore the underlying mechanism and contribute to predictive, preventive, and personalized medicine (PPPM / 3PM). Methods: The gene expression, genetic variation, clinical information, methylation, and digital pathological section from 33 cancer types were downloaded from the TCGA database. Immunohistochemistry (IHC) was used to validate the expression of the m7G regulator genes (m7RGs) hub-gene. The m7G score was calculated by single-sample gene-set enrichment analysis. The association of m7RGs with copy number variation, clinical features, immune-related genes, TMB, MSI, and tumor immune dysfunction and exclusion (TIDE) was comprehensively assessed. CellProfiler was used to extract pathological section characteristics. XGBoost and random forest were used to construct the m7G score prediction model. Single-cell transcriptome sequencing (scRNA-seq) was used to assess the activation state of the m7G in the tumor microenvironment. Results: The m7RGs were highly expressed in tumors and most of the m7RGs are risk factors for prognosis. Moreover, the cellular pathway enrichment analysis suggested that m7G score was closely associated with invasion, cell cycle, DNA damage, and repair. In several cancers, m7G score was significantly negatively correlated with MSI and TMB and positively correlated with TIDE, suggesting an ICB marker potential. XGBoost-based pathomics model accurately predicts m7G scores with an area under the ROC curve (AUC) of 0.97. Analysis of scRNA-seq suggests that m7G differs significantly among cells of the tumor microenvironment. IHC confirmed high expression of EIF4E in breast cancer. The m7G prognostic model can accurately assess the prognosis of tumor patients with an AUC of 0.81, which was publicly hosted at https://pan-cancer-m7g.shinyapps.io/Panca-m7g/. Conclusion: The current study explored for the first time the m7G in pan-cancer and identified m7G as an innovative marker in predicting clinical outcomes and immunotherapeutic efficacy, with the potential for deeper integration with PPPM. Combining m7G within the framework of PPPM will provide a unique opportunity for clinical intelligence and new approaches. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00305-1.

6.
BMC Genomics ; 14: 358, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23718911

ABSTRACT

BACKGROUND: Paris polyphylla var. yunnanensis is an important medicinal plant. Seed dormancy is one of the main factors restricting artificial cultivation. The molecular mechanisms of seed dormancy remain unclear, and little genomic or transcriptome data are available for this plant. RESULTS: In this study, massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform was used to generate a substantial sequence dataset for the P. polyphylla embryo. 369,496 high quality reads were obtained, ranging from 50 to 1146 bp, with a mean of 219 bp. These reads were assembled into 47,768 unigenes, which included 16,069 contigs and 31,699 singletons. Using BLASTX searches of public databases, 15,757 (32.3%) unique transcripts were identified. Gene Ontology and Cluster of Orthologous Groups of proteins annotations revealed that these transcripts were broadly representative of the P. polyphylla embryo transcriptome. The Kyoto Encyclopedia of Genes and Genomes assigned 5961 of the unique sequences to specific metabolic pathways. Relative expression levels analysis showed that eleven phytohormone-related genes and five other genes have different expression patterns in the embryo and endosperm in the seed stratification process. CONCLUSIONS: Gene annotation and quantitative RT-PCR expression analysis identified 464 transcripts that may be involved in phytohormone catabolism and biosynthesis, hormone signal, seed dormancy, seed maturation, cell wall growth and circadian rhythms. In particular, the relative expression analysis of sixteen genes (CYP707A, NCED, GA20ox2, GA20ox3, ABI2, PP2C, ARP3, ARP7, IAAH, IAAS, BRRK, DRM, ELF1, ELF2, SFR6, and SUS) in embryo and endosperm and at two temperatures indicated that these related genes may be candidates for clarifying the molecular basis of seed dormancy in P. polyphlla var. yunnanensis.


Subject(s)
Magnoliopsida/genetics , Seeds/genetics , Transcriptome , DNA, Plant/genetics , Genes, Plant , Plant Dormancy/genetics , Seeds/embryology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...