Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geohealth ; 7(3): e2022GH000757, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36874169

ABSTRACT

In 2020, the Yangtze-Huai river valley (YHRV) experienced the highest record-breaking Meiyu season since 1961, which was mainly characterized by the longest duration of precipitation lasting from early-June to mid-July, with frequent heavy rainstorms that caused severe flooding and deaths in China. Many studies have investigated the causes of this Meiyu season and its evolution, but the accuracy of precipitation simulations has received little attention. It is important to provide more accurate precipitation forecasts to help prevent and reduce flood disasters, thereby facilitating the maintenance of a healthy and sustainable earth ecosystem. In this study, we determined the optimal scheme among seven land surface model (LSMs) schemes in the Weather Research and Forecasting model for simulating the precipitation in the Meiyu season during 2020 over the YHRV region. We also investigated the mechanisms in the different LSMs that might affect precipitation simulations in terms of water and energy cycling. The results showed that the simulated amounts of precipitation were higher under all LSMs than the observations. The main differences occurred in rainstorm areas (>12 mm/day), and the differences in low rainfall areas were not significant (<8 mm/day). Among all of the LSMs, the Simplified Simple Biosphere (SSiB) model obtained the best performance, with the lowest root mean square error and the highest correlation. The SSiB model even outperformed the Bayesian model averaging result. Finally, some factors responsible for the differences modeling results were investigated to understand the related physical mechanism.

2.
Glob Chang Biol ; 25(4): 1493-1513, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30658012

ABSTRACT

Excess nutrients from fertilizer application, pollution discharge, and water regulations outflow through rivers from lands to oceans, seriously impacting coastal ecosystems. A reasonable representation of these processes in land surface models and River Transport Models (RTMs) is very important for understanding human-environment interactions. In this study, the schemes of riverine dissolved inorganic nitrogen (DIN) transport and human activities including nitrogen discharge and water regulation, were synchronously incorporated into a land surface model coupled with a RTM. The effects of anthropogenic nitrogen discharge on the DIN transport in rivers were studied based on simulations of the period 1991-2010 throughout the entire world, conducted using the developed model, which had a spatial resolution of about 1° for land processes and 0.5° for river transport, and data on fertilizer application, point source pollution, and water use. Our results showed that rivers in western Europe and eastern China were seriously polluted, on average, at a rate of 5,000-15,000 tons per year. In the Yangtze River Basin, the amount of point source pollution in 2010 was about four times more than that in 1991, while the amount of fertilizer used in 2010 doubled, which resulted in the increased riverine DIN levels. Further comparisons suggested that the riverine DIN in the USA was affected primarily by nitrogen fertilizer use, the changes in DIN flow rate in European rivers was dominated by point source pollution, and rivers in China were seriously polluted by both the two pollution sources. The total anthropogenic impact on the DIN exported to the Pacific Ocean has increased from 10% to 30%, more significantly than other oceans. In general, our results indicated that incorporating the schemes of nitrogen transport and human activities into land surface models could be an effective way to monitor global river water quality and diagnose the performance of the land surface modeling.

3.
Commun Comput Phys ; 6(5): 955-977, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20556225

ABSTRACT

This paper introduces a three dielectric layer hybrid solvation model for treating electrostatic interactions of biomolecules in solvents using the Poisson-Boltzmann equation. In this model, an interior spherical cavity will contain the solute and some explicit solvent molecules, and an intermediate buffer layer and an exterior layer contain the bulk solvent. A special dielectric permittivity profile is used to achieve a continuous dielectric transition from the interior cavity to the exterior layer. The selection of this special profile using a harmonic interpolation allows an analytical solution of the model by generalizing the classical Kirkwood series expansion. Discrete image charges are used to speed up calculations for the electrostatic potential within the interior and buffer layer regions. Semi-analytical and least squares methods are used to construct an accurate discrete image approximation for the reaction field due to solvent with or without salt effects. In particular, the image charges obtained by the least squares method provide accurate approximations to the reaction field independent of the ionic concentration of the solvent. Numerical results are presented to validate the accuracy and effectiveness of the image charge methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...