Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 326
Filter
1.
Front Vet Sci ; 11: 1382897, 2024.
Article in English | MEDLINE | ID: mdl-38756519

ABSTRACT

Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep. In this study, high-resolution resequencing data from four sheep breeds (Dorper sheep, Suffolk sheep, Ouessant sheep, and Shetland sheep) were analyzed. The nonsynonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) were also genotyped in 642 healthy Ujumqin sheep using MALDI-TOFMS and the genotyping results were associated with growth traits. The results showed that different genotypes of the KIAA1217 g.24429511T>C locus had significant effects on the chest circumferences of Ujumqin sheep. The SNTA1 g.62222626C>A locus had different effects on the chest depths, shoulder widths and rump widths of Ujumqin sheep. This study showed that these two sites can be used for marker-assisted selection, which will be beneficial for future precision molecular breeding.

2.
ACS Nano ; 18(21): 13745-13754, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739489

ABSTRACT

The quest for sustainable urea production has directed attention toward electrocatalytic methods that bypass the energy-intensive traditional Haber-Bosch process. This study introduces an approach to urea synthesis through the coreduction of CO2 and NO3- using copper-doped molybdenum diselenide (Cu-MoSe2) with Cu-Mo dual sites as electrocatalysts. The electrocatalytic activity of the Cu-MoSe2 electrode is characterized by a urea yield rate of 1235 µg h-1 mgcat.-1 at -0.7 V versus the reversible hydrogen electrode and a maximum Faradaic efficiency of 23.43% at -0.6 V versus RHE. Besides, a continuous urea production with an enhanced average yield rate of 9145 µg h-1 mgcat.-1 can be achieved in a flow cell. These figures represent a substantial advancement over that of the baseline MoSe2 electrode. Density functional theory (DFT) calculations elucidate that Cu doping accelerates *NO2 deoxygenation and significantly decreases the energy barriers for C-N bond formation. Consequently, Cu-MoSe2 demonstrates a more favorable pathway for urea production, enhancing both the efficiency and feasibility of the process. This study offers valuable insights into electrode design and understanding of the facilitated electrochemical pathways.

3.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38531364

ABSTRACT

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Subject(s)
Brucella , Brucellosis , Animals , Mice , Brucella/physiology , Proteomics , Brucellosis/metabolism , Endoplasmic Reticulum/metabolism
4.
Appl Opt ; 63(7): 1719-1726, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437271

ABSTRACT

On-chip acousto-optic modulators that operate at an optical wavelength of 780 nm and a microwave frequency of 6.835 GHz are proposed. The modulators are based on a lithium-niobate-on-sapphire platform and efficiently excite surface acoustic waves and exhibit strong interactions with tightly confined optical modes in waveguides. In particular, a high-efficiency phase modulator and single-sideband mode converter are designed. We found that for both microwave and optical wavelengths below 1 µm, the interactions at the cross-sections of photonic waveguides are sensitive to the waveguide width and are significantly different from those in previous studies. Our designed devices have small footprints and high efficiencies, making them suitable for controlling rubidium atoms and realizing hybrid photonic-atomic chips. Furthermore, our devices have the potential to extend the acousto-optic modulators to other visible wavelengths for other atom transitions and for visible light applications, including imaging and sensing.

5.
Hemoglobin ; 48(2): 121-124, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450437

ABSTRACT

We report a new δ-chain hemoglobin (Hb) variant observed in a 5-year-old female living in Yulin, Guangxi, China. Capillary electrophoresis revealed splitting of the Hb A2 peak into two fractions (Hb A2 and Hb A2 variant), and the Hb A2 variant was also detected by high-performance liquid chromatography. However, it could not be detected using matrix-assisted laser desorption lonization-time of flight mass spectrometry. CD41-42 (-TCTT) heterozygosity was observed on the HBB gene by PCR and reverse dot-blot hybridization. Sanger sequencing showed a new transition (G > A) at codon 46 of the HBD gene, resulting in glycine changing to arginine. Based on the patient's place of residence, the new variant was named Hb A2-Yulin [δ46(CD5)Gly→Arg,HBD:c.139G > A].


Subject(s)
Hemoglobin A2 , Hemoglobins, Abnormal , delta-Globins , Humans , Female , delta-Globins/genetics , Child, Preschool , Hemoglobins, Abnormal/genetics , Hemoglobin A2/genetics , Amino Acid Substitution , China
6.
Small ; : e2311172, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351480

ABSTRACT

Ruthenium oxide is currently considered as the promising alternative to Ir-based catalysts employed for proton exchange membrane water electrolyzers but still faces the bottlenecks of limited durability and slow kinetics. Herein, a 2D amorphous/crystalline heterophase ac-Cr0.53 Ru0.47 O2-δ substitutional solid solution with pervasive grain boundaries (GBs) is developed to accelerate the kinetics of acidic oxygen evolution reaction (OER) and extend the long-term stability simultaneously. The ac-Cr0.53 Ru0.47 O2-δ shows a super stability with a slow degradation rate and a remarkable mass activity of 455 A gRu -1 at 1.6 V vs RHE, which is ≈3.6- and 5.9-fold higher than those of synthesized RuO2 and commercial RuO2 , respectively. The strong interaction of Cr-O-Ru local units in synergy with the specific 2D structural characteristics of ac-Cr0.53 Ru0.47 O2-δ dominates its enhanced stability. Meanwhile, high-density GBs and the shortened Ru-O bonds tailored by amorphous/crystalline structure and Cr-O-Ru interaction regulate the adsorption and desorption rates of oxygen intermediates, thus accelerating the overall acidic OER kinetics.

7.
Redox Biol ; 70: 103056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38290383

ABSTRACT

BACKGROUND: Nur77 belongs to the member of orphan nuclear receptor 4A family that plays critical roles in maintaining vascular homeostasis. This study aims to determine whether Nur77 plays a role in attenuating vascular dysfunction, and if so, to determine the molecular mechanisms involved. METHODS: Both Nur77 knockout (Nur77 KO) and Nur77 endothelial specific transgenic mice (Nur77-Tg) were employed to examine the functional significance of Nur77 in vascular endothelium in vivo. Endothelium-dependent vasodilatation to acetylcholine (Ach) and reactive oxygen species (ROS) production was determined under inflammatory and high glucose conditions. Expression of genes was determined by real-time PCR and western blot analysis. RESULTS: In response to tumor necrosis factor alpha (TNF-α) treatment and diabetes, the endothelium-dependent vasodilatation to Ach was significantly impaired in aorta from Nur77 KO as compared with those from the wild-type (WT) mice. Endothelial specific overexpression of Nur77 markedly prevented both TNF-α- and high glucose-induced endothelial dysfunction. Compared with WT mice, after TNF-α and high glucose treatment, ROS production in aorta was significantly increased in Nur77 KO mice, but it was inhibited in Nur77-Tg mice, as determined by dihydroethidium (DHE) staining. Furthermore, we demonstrated that Nur77 overexpression substantially increased the expression of several key enzymes involved in nitric oxide (NO) production and ROS scavenging, including endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GCH-1), glutathione peroxidase-1 (GPx-1), and superoxide dismutases (SODs). Mechanistically, we found that Nur77 increased GCH1 mRNA stability by inhibiting the expression of microRNA-133a, while Nur77 upregulated SOD1 expression through directly binding to the human SOD1 promoter in vascular endothelial cells. CONCLUSION: Our results suggest that Nur77 plays an essential role in attenuating endothelial dysfunction through activating NO production and anti-oxidant pathways in vascular endothelium. Targeted activation of Nur77 may provide a novel therapeutic approach for the treatment of cardiovascular diseases associated with endothelial dysfunction.


Subject(s)
Antioxidants , Nuclear Receptor Subfamily 4, Group A, Member 1 , Vascular Diseases , Animals , Humans , Mice , Antioxidants/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Glucose/metabolism , Mice, Knockout , Mice, Transgenic , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
8.
Phytochem Anal ; 35(1): 146-162, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37731278

ABSTRACT

INTRODUCTION: Dajianzhong decoction (DJZD), a classic famous prescription, has a long history of medicinal application. Modern studies have demonstrated its clinical utility in the treatment of postoperative ileus (POI). But none of the current quality evaluation methods for this compound is associated with efficacy. OBJECTIVES: This study aimed to identify the quality markers (Q-Markers) connected to the treatment of POI in DJZD. METHODOLOGY: Ultra-performance liquid chromatography quadrupole Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) was used to identify the main constituents in DJZD. Based on the qualitative results obtained by fingerprinting, chemical pattern recognition (CPR) was used to analyse the key components affecting the quality and finally to establish the network of the active ingredients in DJZD with POI. RESULTS: A total of 64 chemical components were detected. After fingerprint analysis, 13 common peaks were identified. The fingerprint similarity of 15 batches of samples ranged from 0.860 to 1.000. CPR analysis was able to categorically classify 15 batches of DJZD into two groups. And gingerenone A, methyl-6-gingerdiol, 6-gingerol, and hydroxy-ß-sanshool contributed to their grouping. Twelve common components interact with the therapeutic targets for treating POI. In addition, the mechanism of this prescription for treating POI may be related to the jurisdiction of the neurological system, the immunological system, and the inflammatory response. CONCLUSIONS: This integrated approach can accurately assess and forecast the quality of DJZD, presume the Q-Markers of DJZD for POI, and lay the foundation for studying the theoretical underpinnings and exploring the mechanism of DJZD in the treatment of POI.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Chemometrics , Network Pharmacology , Gas Chromatography-Mass Spectrometry
9.
Angew Chem Int Ed Engl ; 63(3): e202317622, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38061991

ABSTRACT

Simultaneous optimization of the energy level of water dissociation, hydrogen and hydroxide desorption is the key to achieving fast kinetics for the alkaline hydrogen evolution reaction (HER). Herein, the well-dispersed Ru clusters on the surface of amorphous/crystalline CeO2-δ (Ru/ac-CeO2-δ ) is demonstrated to be an excellent electrocatalyst for significantly boosting the alkaline HER kinetics owing to the presence of unique oxygen vacancy (VO ) and Ru Lewis acid-base pairs (LABPs). The representative Ru/ac-CeO2-δ exhibits an outstanding mass activity of 7180 mA mgRu -1 that is approximately 9 times higher than that of commercial Pt/C at the potential of -0.1 V (V vs RHE) and an extremely low overpotential of 21.2 mV at a geometric current density of 10 mA cm-2 . Experimental and theoretical studies reveal that the VO as Lewis acid sites facilitate the adsorption of H2 O and cleavage of H-OH bonds, meanwhile, the weak Lewis basic Ru clusters favor for the hydrogen desorption. Importantly, the desorption of OH from VO sites is accelerated via a water-assisted proton exchange pathway, and thus boost the kinetics of alkaline HER. This study sheds new light on the design of high-efficiency electrocatalysts with LABPs for the enhanced alkaline HER.

10.
Small ; 20(24): e2311136, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38148296

ABSTRACT

Dual-engineering involved of grain boundaries (GBs) and oxygen vacancies (VO) efficiently engineers the material's catalytic performance by simultaneously introducing favorable electronic and chemical properties. Herein, a novel SnO2 nanoplate is reported with simultaneous oxygen vacancies and abundant grain boundaries (V,G-SnOx/C) for promoting the highly selective conversion of CO2 to value-added formic acid. Attributing to the synergistic effect of employed dual-engineering, the V,G-SnOx/C displays highly catalytic selectivity with a maximum Faradaic efficiency (FE) of 87% for HCOOH production at -1.2 V versus RHE and FEs > 95% for all C1 products (CO and HCOOH) within all applied potential range, outperforming current state-of-the-art electrodes and the amorphous SnOx/C. Theoretical calculations combined with advanced characterizations revealed that GB induces the formation of electron-enriched Sn site, which strengthens the adsorption of *HCOO intermediate. While GBs and VO synergistically lower the reaction energy barrier, thus dramatically enhancing the intrinsic activity and selectivity toward HCOOH.

11.
J Neurosci ; 44(7)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38124211

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body. Here, using two mouse models of ASD, male Shank3B -/- and Fmr1 -/y mice, we found that IHH training at an altitude of 5,000 m for 4 h per day, for 14 consecutive days, ameliorated autistic-like behaviors. Moreover, IHH training enhanced hypoxia inducible factor (HIF) 1α in the dorsal raphe nucleus (DRN) and activated the DRN serotonergic neurons. Infusion of cobalt chloride into the DRN, to mimic IHH in increasing HIF1α expression or genetically knockdown PHD2 to upregulate HIF1α expression in the DRN serotonergic neurons, alleviated autistic-like behaviors in Shank3B -/- mice. In contrast, downregulation of HIF1α in DRN serotonergic neurons induced compulsive behaviors. Furthermore, upregulating HIF1α in DRN serotonergic neurons increased the firing rates of these neurons, whereas downregulation of HIF1α in DRN serotonergic neurons decreased their firing rates. These findings suggest that IHH activated DRN serotonergic neurons via upregulation of HIF1α, and thus ameliorated autistic-like phenotypes, providing a novel therapeutic option for ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Male , Animals , Autistic Disorder/genetics , Autistic Disorder/therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Dorsal Raphe Nucleus , Serotonergic Neurons/physiology , Hypoxia , Phenotype , Fragile X Mental Retardation Protein
12.
Article in English | MEDLINE | ID: mdl-38153818

ABSTRACT

Rice blast, caused by Magnaporthe oryzae(M.oryzae), is a destructive rice disease that reduces rice yield by 10% to 30% annually. It also affects other cereal crops such as barley, wheat, rye, millet, sorghum, and maize. Small RNAs (sRNAs) play an essential regulatory role in fungus-plant interaction during the fungal invasion, but studies on pathogenic sRNAs during the fungal invasion of plants based on multi-omics data integration are rare. This paper proposes a novel approach called Graph Embedding combined with Random Walk with Restart (GERWR) to identify pathogenic sRNAs based on multi-omics data integration during M.oryzae invasion. By constructing a multi-omics network (MRMO), we identified 29 pathogenic sRNAs of rice blast fungus. Further analysis revealed that these sRNAs regulate rice genes in a many-to-many relationship, playing a significant regulatory role in the pathogenesis of rice blast disease. This paper explores the pathogenic factors of rice blast disease from the perspective of multi-omics data analysis, revealing the inherent connection between pathogenic factors of different omics. It has essential scientific significance for studying the pathogenic mechanism of rice blast fungus, the rice blast fungus-rice model system, and the pathogen-host interaction in related fields.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Oryza/genetics , Oryza/microbiology , Magnaporthe/genetics , Virulence
13.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5871-5880, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114183

ABSTRACT

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1ß, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(ß-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and ß-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in rat serum, increased VEGF and ß-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and ß-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1ß. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing ß-EP levels.


Subject(s)
Brain Ischemia , NF-kappa B , Rats , Male , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/genetics , NF-KappaB Inhibitor alpha/metabolism , Vascular Endothelial Growth Factor A/genetics , I-kappa B Kinase/metabolism , I-kappa B Kinase/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6/genetics , Calcitonin Gene-Related Peptide/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Brain Ischemia/drug therapy , Tablets
14.
J Neurochem ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987505

ABSTRACT

Resolvin D2 (RvD2), an endogenous lipid mediator derived from docosahexaenoic acid, has been demonstrated to have analgesic effects. However, little is known about the mechanism underlying RvD2 in pain relief. Herein, we demonstrate that RvD2 targeted the P2X3 receptor as an analgesic. The electrophysiological activity of P2X3 receptors was suppressed by RvD2 in rat dorsal root ganglia (DRG) neurons. RvD2 pre-application dose-dependently decreased α,ß-methylene-ATP (α,ß-meATP)-induced inward currents. RvD2 remarkably decreased the maximum response to α,ß-meATP, without influencing the affinity of P2X3 receptors. RvD2 also voltage-independently suppressed ATP currents. An antagonist of the G protein receptor 18 (GPR18), O-1918, prevented the RvD2-induced suppression of ATP currents. Additionally, intracellular dialysis of the Gαi/o -protein antagonist pertussis toxin (PTX), the PKA antagonist H89, or the cAMP analog 8-Br-cAMP also blocked the RvD2-induced suppression. Furthermore, α,ß-meATP-triggered depolarization of membrane potential along with the action potential bursts in DRG neurons were inhibited by RvD2. Lastly, RvD2 attenuated spontaneous nociceptive behaviors as well as mechanical allodynia produced by α,ß-meATP in rats via the activation of the peripheral GPR18. These findings indicated that RvD2 inhibited P2X3 receptors in rat primary sensory neurons through GPR18, PTX-sensitive Gαi/o -proteins, and intracellular cAMP/PKA signaling, revealing a novel mechanism that underlies its analgesic effects by targeting P2X3 receptors.

15.
Huan Jing Ke Xue ; 44(10): 5718-5726, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827787

ABSTRACT

Phosphorus exerts a good stabilization effect on soil lead. In this study, the findings of 90 papers were summarized using the Meta-analysis method. These papers described the immobilization of soil lead using phosphorus from 1997 to 2022. The effects of phosphorus materials on the stabilization rate and speciation transformation of soil Pb and soil pH were quantitatively analyzed based on soil properties, stabilization process conditions, and types of phosphorus materials. The results revealed that the stronger the soil alkalinity (pH ≥ 7.5), the lower is the content of lead (≤ 500 mg·kg-1), and the higher the content of soil organic matter (>0.5%), the more conducive it is to the phosphorus-based stabilization of soil lead; the stabilization rates are 75.21%, 34.97% and 93.12%, respectively. In terms of stabilization process conditions, the higher the addition amount of phosphorus (≥ 10%), the higher is the water content (>50%)and longer is the curing time (≥ 30 days), and the higher the curing temperature (≥ 40℃), the more conducive it is to the stabilization of soil lead, and the stabilization rates are 80.65%, 84.98%, 79.39%, and 41.44%, respectively. According to the types of phosphorus, soluble phosphorus had a high stabilization rate of soil lead (96.24%). The conversion rate of exchangeable lead and carbonate-bound lead to residual lead was 95.93%. Soluble phosphorus was majorly acidic, reducing the soil pH by 7.27%, whereas insoluble phosphorus was majorly alkaline, increasing the soil pH by 3.63%. In conclusion, when the soil pH ≥ 7.5, soil lead content ≤ 500 mg·kg-1, soil organic matter content >0.5%, soluble phosphorus addition ≥ 10%, water content >50%, curing time ≥ 30 days, and curing temperature ≥ 40℃, phosphorus had a better effect on soil Pb stabilization. In the actual remediation process of lead-contaminated soil, to improve the lead stabilization rate, it is necessary to comprehensively consider the effects of soil properties, stabilization process conditions, phosphorus, and other factors.

16.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37820935

ABSTRACT

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Subject(s)
Acid Sensing Ion Channels , Sincalide , Rats , Animals , Rats, Sprague-Dawley , Sincalide/pharmacology , Sincalide/metabolism , Acid Sensing Ion Channels/metabolism , Sensory Receptor Cells , Pain/metabolism , Ganglia, Spinal/metabolism
17.
Ren Fail ; 45(2): 2253930, 2023.
Article in English | MEDLINE | ID: mdl-37724535

ABSTRACT

BACKGROUND: Cyclophosphamide (CTX) and calcineurin inhibitors (CNIs) based regimens are recommended as immunosuppressive therapies for patients with idiopathic membranous nephropathy (IMN). Focal and segmental glomerular sclerosis (FSGS) lesions, which are common in membranous nephropathy (MN), are poor predictors of outcome. This study compared the differences of prognosis between two regimens in patients with IMN combined with FSGS lesions. METHODS: This retrospective study enrolled 108 patients with biopsy-proven IMN, accompanied with FSGS lesions, nephrotic syndrome and an estimated glomerular filtration rate (eGFR)≥60 mL/min/1.73 m2 who were treated with CTX or CNIs. We used propensity score matching (PSM) for balancing the confounding variables. RESULTS: During follow-up, 10 patients (10/55 [18.2%]; nine males) in the CNIs group showed a 50% decline in eGFR; eight had a not otherwise specified variant. Patients initially treated with CNIs had a significantly higher risk of progression to the primary outcome and a lower probability of complete or total remission. The relapse rate was higher in patients who initially received CNIs- than in those who received CTX-based treatment. Before PSM, age and 24-h urine protein level differed significantly between the groups. The PSM model included data from 72 patients. Worse outcomes were also noted among patients who initially received CNIs than those who received CTX-based treatments after matching. CONCLUSIONS: Patients with MN combined with FSGS lesions have a higher risk of renal functional decline and a higher rate of relapse after CNIs than after CTX therapy.


Subject(s)
Glomerulonephritis, Membranous , Glomerulosclerosis, Focal Segmental , Male , Humans , Young Adult , Adult , Glomerulonephritis, Membranous/complications , Glomerulonephritis, Membranous/drug therapy , Glomerulosclerosis, Focal Segmental/complications , Glomerulosclerosis, Focal Segmental/drug therapy , Retrospective Studies , Calcineurin Inhibitors/therapeutic use , Cyclophosphamide/therapeutic use , China
18.
Angew Chem Int Ed Engl ; 62(42): e202307924, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37656425

ABSTRACT

Rational design of electrocatalysts is essential to achieve desirable performance of electrochemical synthesis process. Heterostructured catalysts have thus attracted widespread attention due to their multifunctional intrinsic properties, and diverse catalytic applications with corresponding outstanding activities. Here, we report an in situ restoration strategy for the synthesis of ultrathin Pd-Ni(OH)2 nanosheets. Such Pd-Ni(OH)2 nanosheets exhibit excellent activity and selectivity towards reversible electrochemical reforming of ethylamine and acetonitrile. In the acetonitrile reduction process, Pd acts as reaction center, while Ni(OH)2 provide proton hydrogen through promoting the dissociation of water. Also ethylamine oxidation process can be achieved on the surface of the heterostructured nanosheets with abundant Ni(II) defects. More importantly, an electrolytic cell driven by solar cells was successfully constructed to realize ethylamine-acetonitrile reversible reforming. This work demonstrates the importance of heterostructure engineering in the rational synthesis of multifunctional catalysts towards electrochemical synthesis of fine chemicals.

19.
Front Endocrinol (Lausanne) ; 14: 1166433, 2023.
Article in English | MEDLINE | ID: mdl-37664842

ABSTRACT

Objectives: In this study, we compared the cost-effectiveness comparison of the active surveillance (AS) and early surgery (ES) approaches for papillary thyroid microcarcinoma (PTMC) from the perspective of the Chinese healthcare system. Methods: We performed a cost-effectiveness analysis using a Markov model of PTMC we developed to evaluate the incremental cost-effectiveness ratio of AS and ES. Our reference case was of a 40-year-old woman diagnosed with unifocal (<10 mm) PTMC. Relevant data were extracted after an extensive literature review, and the cost incurred in each state was determined using China Medicare data on payments for ES and AS. The willingness-to-pay threshold was set at ¥242,928/quality-adjusted life-year (QALY) gained. Sensitivity analyses were performed to account for any uncertainty in the model's variables. Additional subgroup analyses were performed to determine whether AS was cost-effective when different initial monitoring ages were used. Results: ES exhibited an effectiveness of 5.2 QALYs, whereas AS showed an effectiveness of 25.8 QALYs. Furthermore, the incremental cost-effectiveness ratio for ES versus AS was ¥1,009/QALY. The findings of all sensitivity analyses were robust. Compared with ES, AS was found to be the cost-effective strategy at initial monitoring ages of 20 and 60 years, with an incremental cost-effectiveness ratio of ¥3,431/QALY and -¥1,316/QALY at 20 and 60 years, respectively. AS was a more cost-effective strategy in patients with PTMC aged more than 60. Conclusions: With respect to the norms of the Chinese healthcare system, AS was more cost-effective for PTMC over lifetime surveillance than ES. Furthermore, it was cost-effective even when the initial monitoring ages were different. In addition, if AS is incorporated into the management plan for PTMC in China at the earliest possible stage, a predicted savings of ¥10 × 108/year could be enabled for every 50,000 cases of PTMC, which indicates a good economic return for future management programs. The identification of such nuances can help physicians and patients determine the best and most individualized long-term management strategy for low-risk PTMC.


Subject(s)
Carcinoma, Papillary , Thyroid Gland , Aged , United States , Female , Humans , Adult , Cost-Benefit Analysis , Watchful Waiting , Medicare , Carcinoma, Papillary/diagnosis , Carcinoma, Papillary/surgery , China/epidemiology
20.
Coron Artery Dis ; 34(8): 555-561, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37721311

ABSTRACT

OBJECTIVES: This study aims to compare the clinical outcomes of patients with de novo chronic total occlusion (CTO) lesions treated by hybrid strategy and drug-coated balloons (DCB)-only strategy. BACKGROUNDS: DCBs have been used as an alternative to or in combination with drug-eluting stents in CTO lesions. However, the clinical impact of DCB treatment on CTO lesion remains uncertain. METHODS: We retrospectively enrolled 154 patients with de novo CTO lesions treated by DCB, including 57 cases in hybrid group and 97 cases in DCB-only group. RESULTS: The lesions in hybrid group were more complicated than those in DCB-only group as shown by higher J-CTO score, and therefore higher percentage of retrograde approach, more IVUS guidance, more CTO guidewires, and longer procedural time were demonstrated. Although the percentage of non-flow-limiting dissection and residual stenosis of more than 30% were lower in hybrid group, TIMI flow grade, satisfactory and acceptable recanalization rate were not significantly different between two groups. During a median follow-up was 470 days, the incidence of target lesion revascularization (TLR), myocardial infarction and cardiac death was 11.0%, 1.3% and 1.9%, respectively. The long-term TLR-free survival was comparable between hybrid and DCB-only groups. By multivariate analysis, DCB length and age were predictors of TLR. CONCLUSION: DCB treatment appears effective and safe in selected de novo CTO lesions during long-term follow up. The recanalization results and long-term outcomes are comparable between hybrid and DCB-only group despite more complicated lesions in hybrid group.


Subject(s)
Drug-Eluting Stents , Myocardial Infarction , Humans , Treatment Outcome , Retrospective Studies , Coated Materials, Biocompatible
SELECTION OF CITATIONS
SEARCH DETAIL
...