Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemistry ; 29(40): e202300566, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37042421

ABSTRACT

Although Metal oxide ZnO is widely used as electron transport layers in all-inorganic PSCs due to high electron mobility, high transmittance, and simple preparation processing, the surface defects of ZnO suppress the quality of perovskite film and inhibit the solar cells' performance. In this work, [6,6]-Phenyl C61 butyric acid (PCBA) modified zinc oxide nanorods (ZnO NRs) is employed as electron transport layer in perovskite solar cells. The resulting perovskite film coated on the zinc oxide nanorods has better crystallinity and uniformity, facilitating charge carrier transportation, reducing recombination losses, and ultimately improving the cells' performance. The perovskite solar cell with the device configuration of ITO/ZnO nanorods/PCBA/CsPbIBr2 /Spiro-OMeTAD/Au delivers a high short circuit current density of 11.83 mA cm-2 and power conversion efficiency of 12.05 %.

2.
J Phys Chem Lett ; 14(10): 2455-2462, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36867121

ABSTRACT

A J-type dimer PMI-2, two perylene monoimides linked by butadiynylene bridger was prepared, and its excited-state dynamics was studied using ultrafast femtosecond transient absorption spectroscopy, along with steady-state spectroscopy and quantum chemical calculations. It is evidently demonstrated that the symmetry-breaking charge separation (SB-CS) process in PMI-2 is positively mediated by an excimer, which is mixed by localized Frenkel excitation (LE) and an interunit charge transfer (CT) state. Kinetic studies show that, with the polarity increasing of the solvent, the transformation of excimer from a mixture to the CT state (SB-CS) is accelerated, and the recombination time of the CT state is reduced obviously. Theoretical calculations indicate that these are due to PMI-2 obtaining more negative free energy (ΔGcs) and lower CT state energy levels in highly polar solvents. Our work suggests that the mixed excimer can be formed in a J-type dimer with suitable structure, in which the charge separation the process is sensitive to the solvent environment.

3.
ACS Appl Mater Interfaces ; 15(4): 5556-5565, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36689684

ABSTRACT

Reducing the interfacial defects of perovskite films is key to improving the performance of perovskite solar cells (PSCs). In this study, two kinds of perylene monoimide (PMI) derivative phosphonium bromide salts were designed and used as a multifunctional interface-modified layer in PSCs. These two molecules are inserted between SnO2 and perovskite to produce a bidirectional passivation effect. The interaction with SnO2 reduces the oxygen vacancy on the surface of SnO2 and tunes the energy level of the electron transport layer, making more matches with the perovskite layer. The modified layer can promote the growth of perovskite crystals and reduce the interfacial defects of the perovskite film. Furthermore, the power conversion efficiency (PCE) of PSCs increased from 19.49 to 22.85%, and the open-circuit voltage (VOC) increased from 1.06 to 1.14 V. At the same time, the PCE of the SnO2/PMI-TPP-based device remained 88% of the initial PCE after 240 h of continuous illumination. In addition, these two PMI derivatives with a quasi-planar structure can improve the flexibility of flexible PSCs. This study provided a new strategy for the interfacial modification of PSCs and a new insight into the application of flexible PSCs.

4.
Nanoscale Adv ; 4(24): 5297-5303, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540128

ABSTRACT

Germanium selenide (GeSe2), as a typical member of 2D wide bandgap semiconductors (WBSs), shows great potential in ultraviolet (UV) optoelectronics due to its excellent flexibility, superior environmental stability, competitive UV absorption coefficient, and significant spectral selectivity. However, the GeSe2-based UV photodetector suffers from high operation voltages and low photocurrent, which prevents its practical imaging applications. In this work, we report an elevated photocurrent generation in a vertical stacking graphene/GeSe2/graphene heterostructure with low operation voltage and low power consumption. Efficient collection of photoexcited carriers in GeSe2 through graphene electrodes results in outstanding UV detection properties, including a pronounced responsivity of 37.1 A W-1, a specific detectivity of 8.83 × 1011 Jones, and an ultrahigh on/off ratio (∼105) at 355 nm. In addition, building a Schottky barrier between GeSe2 and graphene and reducing the channel length can increase the photoresponse speed to ∼300 µs. These accomplishments set the stage for future optoelectronic applications of vertical 2D WBS heterostructure UV photodetectors.

5.
ACS Appl Mater Interfaces ; 12(23): 26670-26679, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32423193

ABSTRACT

Phenyl-C61-butyric acid methyl ester (PCBM) has been widely researched as a passivate electron transport layer in planar n-i-p-type perovskite solar cells (PSCs). However, due to the terrible wettability of PCBM, the growth of perfect large-area perovskite films on the electron transport layer treated by PCBM is a huge challenge, which limits the commercial application of PSCs. Herein, we incorporate a hydrophilic polymer polyethylene glycol (PEG) into PCBM to ameliorate its wettability. A high-quality perovskite film can be prepared on a 2 × 2 cm substrate. Hydrogen-bonding effects between the PEG-PCBM buffer layer and the perovskite layer can further stabilize the electron transport layer/perovskite interface. Based on the improved electron transport and suppressed carrier recombination, a device with an active area of 1.03 cm2 achieves an efficiency of 18.25%. In addition, the first-principles calculations indicate that PEG has stronger adsorption (Eads = -0.37) toward H2O than the MAPbI3 perovskite (Eads = -0.25), which can prevent water molecules from infiltrating the perovskite. The unsealed device still maintains 90% of the initial efficiency under ambient conditions, with 30-40% relative humidity for 22 days. These outstanding properties are attributed to the unique molecular structure and prominent wettability of PEG.

6.
RSC Adv ; 10(32): 18608-18613, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518287

ABSTRACT

Despite the successful enhancement in the high-power conversion efficiency (PCE) of perovskite solar cells (PSCs), the poor stability of PSCs is one of the major issues preventing their commercialization. The attenuation of PSCs may be due to the lower heat resistance of the organic charge transport layer and the tendency to aggregate at high temperatures. Here we report cerium oxide (CeO x ) as an electron transport layer (ETL) prepared through a simple solution processed at a low temperature (∼100 °C) to replace the organic charge transport layer on top of the inverted planar PSCs. The CeO x layer has excellent charge selectivity and can provide the perovskite film with protection against moisture and metal reactions with the electrode. The solar cell with CeO x as the electron transport layer has a power conversion efficiency of 17.47%. These results may prove a prospect for practical applications.

7.
ACS Omega ; 4(21): 19177-19182, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31763541

ABSTRACT

This work investigates the photovoltaic properties of polymers that include different carbazole blocks as electron donors (D) but the same benzothiadiazole derivative as the electron acceptor (A). Five D-A copolymers are studied with ultrafast intramolecular exciton splitting and recombination dynamics to acquire the single-molecule structure and their photovoltaic performance relationship. The photovoltaic parameters such as energy level, optical band gap, and light-harvesting ability are highly dependent on the molecular structure of the donor monomer (including their appended flexible alkyl chain). Branched or linear alkyl groups on the same D block obviously vary the polymer steady-state absorption spectra and film morphology. For organic solar cells, this work allows tuning and control of the ultrafast dynamics, implying photovoltaic material design in the future.

8.
Nanomaterials (Basel) ; 9(12)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766695

ABSTRACT

Despite the successful improvement in the power conversion efficiency (PCE) of perovskite solar cells (PSCs), the issue of instability is still a serious challenge for their commercial application. The issue of the PSCs mainly originates from the decomposition of the organic-inorganic hybrid perovskite materials, which will degrade upon humidity and suffer from the thermal environment. In addition, the charge transport layers also influence the stability of the whole devices. In this study, inorganic transport layers are utilized in an inverted structure of PSCs employing CsPbIBr2 as light absorbent layer, in which nickel oxide (NiOx) and cerium oxide (CeOx) films are applied as the hole transport layer (HTL) and the electron transport layer (ETL), respectively. The inorganic transport layers are expected to protect the CsPbIBr2 film from the contact of moisture and react with the metal electrode, thus preventing degradation. The PSC with all inorganic components, inorganic perovskite and inorganic transport layers demonstrates an initial PCE of 5.60% and retains 5.56% after 600 s in ambient air at maximum power point tracking.

9.
Nanoscale Res Lett ; 11(1): 267, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27225423

ABSTRACT

The efficiency enhancement mechanism of the alkali-treated Si nanowire (SiNW) solar cells is discussed and analyzed in detail, which is important to control the useful photovoltaic process. All the results demonstrate that the photovoltaic performance enhancement of alkali-treated SiNW device steps from the formation of the good core-shell heterojunction, which consequently enhances the junction area, promotes fast separating and transporting of electron and hole pairs, and reduces the carrier surface combination. It also indicates that alkali treatment for SiNWs is a promising processing as an economical method for the formation of good core-shell SiNW/polymer heterojunction.

10.
Macromol Rapid Commun ; 33(1): 87-91, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22135088

ABSTRACT

A set of monodisperse 2,7-linked carbazole oligomers (3-mer, 5-mer, 7-mer, and 9-mer) was synthesized, and their photophysical, electrochemical, and thermal properties were investigated. In solutions, these oligomers exhibited bright blue emission with almost quantitative fluorescence quantum yield. The emission spectra of these oligomers in films are quite different. 3-Mer and 5-mer exhibited featureless emission spectra, whereas 7-mer and 9-mer showed well-resolved emission spectra.


Subject(s)
Carbazoles/chemistry , Oligonucleotides/chemistry , Polymers/chemical synthesis , Chemistry Techniques, Synthetic , Fluorescence , Molecular Structure , Polymers/chemistry
12.
J Am Chem Soc ; 131(41): 14612-3, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19788295

ABSTRACT

An alternating copolymer, poly(2-(5-(5,6-bis(octyloxy)-4-(thiophen-2-yl)benzo[c][1,2,5]thiadiazol-7-yl)thiophen-2-yl)-9-octyl-9H-carbazole) (HXS-1), was designed, synthesized, and used as the donor material for high efficiency polymer solar cells. The close packing of the polymer chains in the solid state was confirmed by XRD. A J(sc) of 9.6 mA/cm(2), a V(oc) of 0.81 V, an FF of 0.69, and a PCE of 5.4% were achieved with HXS-1 and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(71)BM) as a bulk heterojunction active layer spin-coated from a solvent mixture of 1,2-dichlorobenzene and 1,8-diodooctane (97.5:2.5) under air mass 1.5 global (AM 1.5 G) irradiation of 100 mW/cm(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...