Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Gels ; 10(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786203

ABSTRACT

High-temperature aerogels have garnered significant attention as promising insulation materials in various industries such as aerospace, automotive manufacturing, and beyond, owing to their remarkable thermal insulation properties coupled with low density. With advancements in manufacturing techniques, the thermal resilience of aerogels has considerable improvements. Notably, polyimide-based aerogels can endure temperatures up to 1000 °C, zirconia-based aerogels up to 1300 °C, silica-based aerogels up to 1500 °C, alumina-based aerogels up to 1800 °C, and carbon-based aerogels can withstand up to 2500 °C. This paper systematically discusses recent advancements in the thermal insulation performance of these five materials. It elaborates on the temperature resistance of aerogels and elucidates their thermal insulation mechanisms. Furthermore, it examines the impact of doping elements on the thermal conductivity of aerogels and consolidates various preparation methods aimed at producing aerogels capable of withstanding temperatures. In conclusion, by employing judicious composition design strategies, it is anticipated that the maximum tolerance temperature of aerogels can surpass 2500 °C, thus opening up new avenues for their application in extreme thermal environments.

2.
J Phys Chem Lett ; 14(5): 1343-1353, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36727740

ABSTRACT

There is a lack of fundamental understanding of mechano-electro-optical multifield coupling for organometallic halide perovskites (OHPs). In this study, the effect of light irradiation on OHPs' mechanical properties was investigated by atomic force microscopy. In the dark, an MAPbI3 film was dominated by grains with a Young's modulus of approximately 5.94 GPa, which decreased to 2.97 GPa under light illumination. The photoinduced strain distribution within the polycrystalline MAPbI3 film was not uniform, and the maximum strain generated inside individual grains was 5.8%. Furthermore, the illumination-induced strain promoted the formation of ferroelastic domains. The Young's modulus of one domain increased from 8.99 to 25.27 GPa, whereas the Young's modulus of an adjacent domain decreased from 14.9 to 1.30 GPa. According to the density-functional-theory calculations, the observed photoinduced strain-promoted variations in mechanical properties were caused by the reversible migration of MA+ cations. These findings can help establish the relationship among the mechanical-chemical-optoelectronic characteristics of OHPs.

3.
ACS Omega ; 7(30): 26116-26122, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936395

ABSTRACT

The effect of the curing temperature (T c) on the properties of PBO aerogel was investigated in this paper. The compressive strength of PBO aerogel prepared was much higher than that of PBO aerogel of the same density in other kinds of literature. With the robust F-type polybenzoxazine (PBO) aerogels with ultra-high Young's modulus (733.7 MPa at 0.48 g/cm3 and 1070 MPa at 0.57 g/cm3), excellent properties were obtained through a facile and scalable room-temperature HCl-catalyzed sol-gel method, followed by the ambient pressure drying technique. It is found that T c plays a vital role in the polymerization process and the evolution of the microstructure of the 3D porous PBO network, where the necks between the nanoparticles become thick and strong when T c is up to 150 °C, resulting in a pearl necklace-to-worm transformation in the micro-structure and significant growth in mechanical properties, but if T c is higher than 180 °C, the pore volume and specific surface area will decrease sharply. Moreover, all synthetic PBO aerogels here possessed inherent flame retardancy and a high residual char rate in the volume density (0.32-0.57 g/cm3). These properties make the F-type PBO aerogels a candidate material in aerospace applications or other fields.

4.
Phys Chem Chem Phys ; 20(26): 17727-17738, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29915843

ABSTRACT

Molecular dynamics simulations are performed to investigate the orientation and temperature dependence of tensile response in single crystal W. It is found that W single crystal exhibits distinct temperature-dependent deformation behaviors along different orientations. With increasing temperature, the yield strain in the [001] orientation increases, while those in [110] and [111] orientations first increase and then decrease. The tensile deformations along orientations close to [001] are found to be dominated by twinning; the nucleation and growth of twins are accomplished through the nucleation and glide of ⅙111 partial dislocations on {112} planes. In contrast, the deformations along orientations close to [110] and [111] are found to be dominated by the slip of ½111 full dislocations, which move in a stay-and-go fashion. Moreover, intermediate deformation behaviors, which may become unstable at high temperatures, are observed for some intervening orientations. The distinct deformation behaviors of W along different orientations are rationalized based on the twinning-antitwinning asymmetry of ⅙111 partial dislocations on {112} planes.

SELECTION OF CITATIONS
SEARCH DETAIL