Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(35): 14030-14037, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35984686

ABSTRACT

Scheelite-type HoCrO4 was prepared by treating the ambient-pressure zircon-type precursor phase under 8 GPa and 700 K. A long-range antiferromagnetic phase transition is found to occur at TN ≈ 23 K due to the spin order of Ho3+ and Cr5+ magnetic ions. However, the antiferromagnetic ground state is sensitive to an external magnetic field and a moderate field of about 1.1 T can induce a metamagnetic transition, giving rise to the presence of a large magnetization up to 8.5 µB/f.u. at 2 K and 7 T. Considerable linear magnetoelectric effect is observed in the antiferromagnetic state, while the induced electric polarization experiences a sharp increase near the critical field of the metamagnetic transition. Ferromagnetism and ferroelectricity thus rarely coexist under higher magnetic fields in scheelite-type HoCrO4. Moreover, a magnetic field also plays an important role in the longitudinal constriction of HoCrO4, and a significant magnetostrictive effect with a value of up to 300 ppm is observed at 2 K and 9 T, which can be attributed to the strong anisotropy of the rare-earth Ho3+ ion. Possible coupling between magnetoelectric and magnetoelastic effects is discussed.

2.
Nat Commun ; 13(1): 2373, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501351

ABSTRACT

Topology, an important branch of mathematics, is an ideal theoretical tool to describe topological states and phase transitions. Many topological concepts have found their physical entities in real or reciprocal spaces identified by topological invariants, which are usually defined on orientable surfaces, such as torus and sphere. It is natural to investigate the possible physical realization of more intriguing non-orientable surfaces. Herein, we show that the set of spin-induced ferroelectric polarizations in cubic perovskite oxides AMn3Cr4O12 (A = La and Tb) reside on the topological Roman surface-a non-orientable two-dimensional manifold formed by sewing a Möbius strip edge to that of a disc. The induced polarization may travel in a loop along the non-orientable Möbius strip or orientable disc, depending on the spin evolution as controlled by an external magnetic field. Experimentally, the periodicity of polarization can be the same or twice that of the rotating magnetic field, which is consistent with the orientability of the disc and the Möbius strip, respectively. This path-dependent topological magnetoelectric effect presents a way to detect the global geometry of a surface and deepens our understanding of topology in both mathematics and physics.

3.
Adv Mater ; 34(17): e2200626, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35231130

ABSTRACT

Half metals, in which one spin channel is conducting while the other is insulating with an energy gap, are theoretically considered to comprise 100% spin-polarized conducting electrons, and thus have promising applications in high-efficiency magnetic sensors, computer memory, magnetic recording, and so on. However, for practical applications, a high Curie temperature combined with a wide spin energy gap and large magnetization is required. Realizing such a high-performance combination is a key challenge. Herein, a novel A- and B-site ordered quadruple perovskite oxide LaCu3 Fe2 Re2 O12 with the charge format of Cu2+ /Fe3+ /Re4.5+ is reported. The strong Cu2+ (↑)Fe3+ (↑)Re4.5+ (↓) spin interactions lead to a ferrimagnetic Curie temperature as high as 710 K, which is the reported record in perovskite-type half metals thus far. The saturated magnetic moment determined at 300 K is 7.0 µB f.u.-1 and further increases to 8.0 µB f.u.-1 at 2 K. First-principles calculations reveal a half-metallic nature with a spin-down conducting band while a spin-up insulating band with a large energy gap up to 2.27 eV. The currently unprecedented realization of record Curie temperature coupling with the wide energy gap and large moment in LaCu3 Fe2 Re2 O12 opens a way for potential applications in advanced spintronic devices at/above room temperature.

4.
Inorg Chem ; 60(21): 16308-16315, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34658238

ABSTRACT

A 4H-type BaMnO3 single crystal was prepared by combining the floating zone method with high-pressure treatment at 5 GPa and 1023 K. The crystal crystallizes to a hexagonal structure with space group P63/mmc and lattice parameters a = 5.63723(5) Å and c = 9.22355(8) Å. In this structure, face-sharing MnO6 octahedral dimers connect with each other by corner O atoms along the c-axis direction, forming an -A-B-A-C-type 4H arrangement. A long-range antiferromagnetic (AFM) phase transition is found to occur at TN ≈ 263 K. When the synthesis pressure increases to 20 GPa, a new polymorphic phase is obtained. This higher-pressure phase still possesses the hexagonal P63/mmc symmetry, but the lattice parameters change to be a = 5.61349(2) Å and c = 13.66690(9) Å with a unit cell volume reduction of 2.05%. In this new phase, the c-axis MnO6 dimers are separated by MnO6 octahedral layers in the ab plane, forming an -A-B-C-A-C-B-type 6H structure. The 6H phase exhibits two long-range AFM orderings at TN1 ≈ 220 K and TN2 ≈ 25 K, respectively. The different magnetic properties are discussed on the basis of the detailed structural constitutions of 4H- and 6H-BaMnO3.

5.
Inorg Chem ; 59(17): 12445-12452, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32805988

ABSTRACT

A new oxide, LaMn3Co2Mn2O12, was synthesized under high-pressure (7 GPa) and high-temperature (1423 K) conditions. The compound crystallizes in an AA'3B4O12-type quadruple perovskite structure with space group Im3̅. The Rietveld structural analysis combined with soft X-ray absorption spectroscopy reveals the charge combination to be LaMn3+3Co2+2Mn4+2O12, where the La3+ and Mn3+ are 1:3 ordered respectively at the A and A' sites, whereas the Co2+ and Mn4+ are disorderly distributed at the B site. This is in sharp contrast to R2Co2+Mn4+O6 (R = La and rare earth) double perovskites, in which the Co2+ and Mn4+ charge states are always orderly distributed with a rocksalt-type fashion, giving rise to a long-range magnetic ordering. As a result, LaMn3Co2Mn2O12 displays spin glassy magnetic properties due to the random Co2+ and Mn4+ distribution, as demonstrated by dc and ac magnetic susceptibility as well as specific heat measurements. Possible factors that affect the B-site degree of order in perovskite structures are discussed.

6.
Inorg Chem ; 59(6): 3887-3893, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32125835

ABSTRACT

An ilmenite-like monoclinic phase of HgMnO3 with space group P21/c was prepared using high-pressure and high-temperature methods at 18 GPa and 1473 K. The MnO6 octahedra form a two-dimensional (2D) network in the bc plane, leading to a long-range antiferromagnetic ordering with a low Néel temperature of TN ∼ 32 K. As the synthesis pressure increases to 20 GPa, a new perovskite-like rhombohedral phase with space group R3̅c was found to occur. The rhombohedral phase exhibits a three-dimensional (3D) network for the MnO6 octahedra, giving rise to an antiferromagnetic ordering at TN ∼ 60 K. X-ray absorption spectroscopy confirms the invariable Mn4+ charge state in these two polymorphic phases, in agreement with the Curie-Weiss and bond valence sum analysis. HgMnO3 provides an interesting example to study the magnetic properties from 2D to 3D by varying synthesis pressure.

7.
J Am Chem Soc ; 142(12): 5731-5741, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32083872

ABSTRACT

Spin state transitions and intermetallic charge transfers can essentially change material structural and physical properties while excluding external chemical doping. However, these two effects have rarely been found to occur sequentially in a specific material. In this article, we show the realization of these two phenomena in a perovskite oxide PbCoO3 with a simple ABO3 composition under high pressure. PbCoO3 possesses a peculiar A- and B-site ordered charge distribution Pb2+Pb4+3Co2+2Co3+2O12 with insulating behavior at ambient conditions. The high spin Co2+ gradually changes to low spin with increasing pressure up to about 15 GPa, leading to an anomalous increase of resistance magnitude. Between 15 and 30 GPa, the intermetallic charge transfer occurs between Pb4+ and Co2+ cations. The accumulated charge-transfer effect triggers a metal-insulator transition as well as a first-order structural phase transition toward a Tetra.-I phase at the onset of ∼20 GPa near room temperature. On further compression over 30 GPa, the charge transfer completes, giving rise to another first-order structural transformation toward a Tetra.-II phase and the reentrant electrical insulating behavior.

8.
Inorg Chem ; 58(22): 15529-15535, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31702150

ABSTRACT

A new 3d-5d hybridization oxide, CaCu3Mn2Os2O12 (CCMOO), was prepared by high-pressure and high-temperature synthesis methods. The compound crystallizes to an A-site-ordered but B-site-disordered quadruple perovskite structure with a space group of Im3̅ (No. 204). The charge states of the transition metals are determined to be Cu2+/Mn3.5+/Os4.5+ by X-ray absorption spectroscopy. Although most B-site-disordered perovskites possess lower spin-ordering temperatures or even nonmagnetic transitions, the current CCMOO displays a long-range ferrimagnetic phase transition with a critical temperature as high as ∼280 K. Moreover, a large saturated magnetic moment is found to occur [7.8 µB/formula units (f.u.) at 2 K]. X-ray magnetic circular dichroism shows a Cu2+(↑)Mn3.5+(↑)Os4.5+(↓) ferrimagnetic coupling. The corner-sharing Mn/OsO6 octahedra with mixed Mn and Os charge states make the compound metallic in electrical transport, in agreement with a specific heat fitting at low temperature. This work provides a rare example with high spin-ordering temperature and a large magnetic moment in B-site-disordered 3d-5d hybridization perovskite oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...