Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.658
Filter
1.
NPJ Microgravity ; 10(1): 51, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704360

ABSTRACT

Human Wharton's jelly stem cells (hWJSCs) are multipotent stem cells that are extensively employed in biotechnology applications. However, the impact of simulated lunar microgravity (sµG) on the growth, differentiation, and viability of this cell population is incompletely characterized. We aimed to determine whether acute (72 h) exposure to sµG elicited changes in growth and lineage differentiation in hWJSCs and if putative changes were maintained once exposure to terrestrial gravity (1.0 G) was restored. hWJSCs were cultured under standard 1.0 G conditions prior to being passaged and cultured under sµG (0.16 G) using a random positioning machine. Relative to control, hWJSCs cultured under sµG exhibited marked reductions in growth but not viability. Cell population expression of characteristic stemness markers (CD 73, 90, 105) was significantly reduced under sµG conditions. hWJSCs had 308 significantly upregulated and 328 significantly downregulated genes when compared to 1.0 G culture conditions. Key markers of cell replication, including MKI67, were inhibited. Significant upregulation of osteocyte-chondrocyte lineage markers, including SERPINI1, MSX2, TFPI2, BMP6, COMP, TMEM119, LUM, HGF, CHI3L1 and SPP1, and downregulation of cell fate regulators, including DNMT1 and EZH2, were detected in sµG-exposed hWJSCs. When returned to 1.0 G for 3 days, sµG-exposed hWJSCs had accelerated growth, and expression of stemness markers increased, approaching normal (i.e. 95%) levels. Our data support earlier findings that acute sµG significantly reduces the cell division potential of hWJSCs and suggest that acute sµG-exposure induces reversible changes in cell growth accompanied by osteocyte-chondrocyte changes in lineage differentiation.

2.
Discov Med ; 36(184): 882-897, 2024 May.
Article in English | MEDLINE | ID: mdl-38798249

ABSTRACT

Cardiovascular disease stands as the leading cause of death globally, with hypertension emerging as an independent risk factor for its development. The worldwide prevalence of hypertension hovers around 30%, encompassing a staggering 1.2 billion patients, and continues to escalate annually. Medication plays a pivotal role in managing hypertension, not only effectively regulating blood pressure (BP) but also substantially mitigating the occurrence of cardiovascular and cerebrovascular diseases. This review comprehensively outlines the categories, mechanisms, clinical applications, and drawbacks of conventional antihypertensive drugs. It delves into the five primary pharmacological classifications, namely ß-receptor blockers, calcium channel blockers (CCBs), angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and diuretics. The emphasis is placed on elucidating the mechanisms, advantages, and research progress of novel antihypertensive drugs targeting emerging areas. These include mineralocorticoid receptor antagonists (MRAs), atrial natriuretic peptides (ANPs), neutral endopeptidase inhibitors (NEPIs), sodium-dependent glucose transporter 2 inhibitors (SGLT-2Is), glucagon-like peptide-1 receptor agonists (GLP-1RAs), endothelin receptor antagonists (ERAs), soluble guanylate cyclase (sGC) agonists, brain aminopeptidase A inhibitors (APAIs), and small interfering ribonucleic acids (siRNAs) targeting hepatic angiotensinogen. Compared to conventional antihypertensive drugs, these novel alternatives exhibit favorable antihypertensive effects with minimal adverse reactions. This review serves as a valuable reference for future research and the clinical application of antihypertensive drugs.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Calcium Channel Blockers/therapeutic use , Calcium Channel Blockers/pharmacology , Animals , Adrenergic beta-Antagonists/therapeutic use , Adrenergic beta-Antagonists/pharmacology , Diuretics/therapeutic use , Diuretics/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use
3.
Int J Oral Sci ; 16(1): 41, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777841

ABSTRACT

The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.


Subject(s)
Cellular Senescence , Diet, High-Fat , Mesenchymal Stem Cells , Osteoporosis , Reactive Oxygen Species , Receptors, Calcitriol , Mesenchymal Stem Cells/metabolism , Animals , Receptors, Calcitriol/metabolism , Osteoporosis/etiology , Osteoporosis/metabolism , Mice , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Mice, Inbred C57BL , Male , Cell Proliferation , Osteogenesis/physiology , Signal Transduction , Multiomics
4.
Crit Care ; 28(1): 162, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38741134

ABSTRACT

BACKGROUND: The effect of the periurethral cleansing range on catheter-associated urinary tract infection (CAUTI) occurrence remains unknown. The purpose of this study was to evaluate the efficacy of expanded periurethral cleansing for reducing CAUTI in comatose patients. METHODS: In this randomized controlled trial, eligible patients in our hospital were enrolled and allocated randomly to the experimental group (expanded periurethral cleansing protocol; n = 225) or the control group (usual periurethral cleansing protocol; n = 221). The incidence of CAUTI on days 3, 7, and 10 after catheter insertion were compared, and the pathogen results and influencing factors were analyzed. RESULTS: The incidences of CAUTI in the experimental and control groups on days 3, 7, and 10 were (5/225, 2.22% vs. 7/221, 3.17%, P = 0.54), (12/225, 5.33% vs. 18/221, 8.14%, P = 0.24), and (23/225, 10.22% vs. 47/221, 21.27%, P = 0.001), respectively; Escherichia coli and Candida albicans were the most common species in the two groups. The incidences of bacterial CAUTI and fungal CAUTI in the two groups were 11/225, 4.89% vs. 24/221, 10.86%, P = 0.02) and (10/225, 4.44% vs. 14/221, 6.33%, P = 0.38), respectively. The incidences of polymicrobial CAUTI in the two groups were 2/225 (0.89%) and 9/221 (4.07%), respectively (P = 0.03). The percentages of CAUTI-positive females in the two groups were 9.85% (13/132) and 29.52% (31/105), respectively (P < 0.05). The proportion of CAUTI-positive patients with diabetes in the experimental and control groups was 17.72% (14/79), which was lower than the 40.85% (29/71) in the control group (P < 0.05). CONCLUSION: Expanded periurethral cleansing could reduce the incidence of CAUTI, especially those caused by bacteria and multiple pathogens, in comatose patients with short-term catheterization (≤ 10 days). Female patients and patients with diabetes benefit more from the expanded periurethral cleansing protocol for reducing CAUTI.


Subject(s)
Catheter-Related Infections , Coma , Urinary Tract Infections , Humans , Female , Urinary Tract Infections/prevention & control , Urinary Tract Infections/epidemiology , Male , Middle Aged , Catheter-Related Infections/prevention & control , Catheter-Related Infections/epidemiology , Adult , Aged , Urinary Catheterization/adverse effects , Urinary Catheterization/methods , Urethra
5.
Adv Mater ; : e2405024, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736201

ABSTRACT

Organic multiferroic heterostructure is one of the most promising structures for the future design of high-density flexible energy-efficient data storage. Here, organic ferromagnetic metal(tetracyanoethylene) (M(TCNE))x/ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) multiferroic heterostructures are fabricated, where the excited state in M(TCNE)x interacted with localized dipole in P(VDF-TrFE) provides a key link for the interfacial coupling. Thus, aligned dipoles in P(VDF-TrFE) by external electric field can affect the magnetization of Fe(TCNE)x effectively to result in a pronounced magnetization-voltage (M-V) hysteresis loop. Moreover, light-induced electron-hole pairs in Fe(TCNE)x with long lifetime effectively interact with the dipoles in P(VDF-TrFE) to lead to an effect in external light control of electric polarization of P(VDF-TrFE). Overall, the organic multiferroic heterostructure provides the possibility of realizing two storage modes, light control of dipole as well as electric field control of spin, which can broaden multifunctional applications of organic multiferroic materials in the area of multistate storage.

6.
Front Endocrinol (Lausanne) ; 15: 1320632, 2024.
Article in English | MEDLINE | ID: mdl-38711982

ABSTRACT

Purpose: A systematic evaluation and Meta-analysis were performed to determine the relationship between IL-17A levels in ocular aqueous and peripheral venous serum samples and diabetic retinopathy (DR). Methods: PubMed, Embase, Web of Science, and CNKI databases were searched from the time of library construction to 2023-09-20.The results were combined using a random-effects model, sensitivity analyses were performed to determine whether the arithmetic was stable and reliable, and subgroup analyses were used to look for possible sources of heterogeneity. Results: A total of 7 case-control studies were included. The level of IL-17A was higher in the Nonproliferative DR(NPDR) group than in the Non-DR(NDR) group [SMD=2.07,95%CI(0.45,3.68),P=0.01], and the level of IL-17A in the proliferating DR(PDR) group was higher than that of the NDR group [SMD=4.66,95%CI(1.23,8.08),P<0.00001]. IL-17A levels in peripheral serum and atrial fluid were significantly higher in NPDR and PDR patients than in non-DR patients in subgroup analyses, and detection of peripheral serum IL-17A concentrations could help to assess the risk of progression from NPDR to PDR. Sensitivity analyses suggested that the results of the random-effects arithmetic were stable and reliable. Subgroup analyses based on assay method and sample source showed that the choice of these factors would largely influence the relationship between IL-17A levels and DR. Conclusion: Elevated peripheral serum and ocular aqueous humor IL-17A levels in diabetic patients are associated with the risk of DR, IL-17A may serve as a potential predictor or therapeutic target for DR, and IL-17A may be an important predictor of inflammation for the progression of NPDR to PDR. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024532900.


Subject(s)
Diabetic Retinopathy , Interleukin-17 , Humans , Diabetic Retinopathy/blood , Interleukin-17/blood , Aqueous Humor/metabolism , Case-Control Studies , Biomarkers/blood
7.
Nano Lett ; 24(20): 6183-6191, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728596

ABSTRACT

Two-dimensional (2D) materials are promising candidates for spintronic applications. Maintaining their atomically smooth interfaces during integration of ferromagnetic (FM) electrodes is crucial since conventional metal deposition tends to induce defects at the interfaces. Meanwhile, the difficulties in picking up FM metals with strong adhesion and in achieving conductance match between FM electrodes and spin transport channels make it challenging to fabricate high-quality 2D spintronic devices using metal transfer techniques. Here, we report a solvent-free magnetic electrode transfer technique that employs a graphene layer to assist in the transfer of FM metals. It also serves as part of the FM electrode after transfer for optimizing spin injection, which enables the realization of spin valves with excellent performance based on various 2D materials. In addition to two-terminal devices, we demonstrate that the technique is applicable for four-terminal spin valves with nonlocal geometry. Our results provide a promising future of realizing 2D spintronic applications using the developed magnetic electrode transfer technique.

8.
Anal Methods ; 16(20): 3240-3248, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38726550

ABSTRACT

Currently, Nernstian-response-based polymeric membrane potentiometric sensors using molecularly imprinted polymers (MIPs) as receptors have been successfully developed for determination of organic ionic species. However, the preparation of these MIP receptors usually involves tedious and time-consuming template-removal procedures. Herein, a template-removal-free MIP is proposed and used as a receptor for fabrication of a potentiometric sensor. The proposed methodology not only significantly shortens the preparation time of MIP-based potentiometric sensors but also improves the batch-to-batch reproducibility of these sensors. By using antibiotic vancomycin as a model, the new concept offers a linear concentration range of 1.0 × 10-7 to 1.0 × 10-4 mol L-1 with a detection limit of 2.51 × 10-8 mol L-1. It can be expected that the template-removal-free MIP-based sensing strategy could lay the foundation for simple fabrication of electrochemical sensors without the need for template removal such as potentiometric and capacitive sensors and ion-sensitive field-effect transistors.


Subject(s)
Anti-Bacterial Agents , Molecularly Imprinted Polymers , Potentiometry , Vancomycin , Potentiometry/methods , Potentiometry/instrumentation , Anti-Bacterial Agents/analysis , Molecularly Imprinted Polymers/chemistry , Vancomycin/chemistry , Vancomycin/analysis , Membranes, Artificial , Molecular Imprinting/methods , Limit of Detection , Polymers/chemistry , Reproducibility of Results
9.
Phys Rev Lett ; 132(19): 193602, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804940

ABSTRACT

We demonstrate the emergence of nonreciprocal superradiant phase transitions and novel multicriticality in a cavity quantum electrodynamics system, where a two-level atom interacts with two counterpropagating modes of a whispering-gallery-mode microcavity. The cavity rotates at a certain angular velocity and is directionally squeezed by a unidirectional parametric pumping χ^{(2)} nonlinearity. The combination of cavity rotation and directional squeezing leads to nonreciprocal first- and second-order superradiant phase transitions. These transitions do not require ultrastrong atom-field couplings and can be easily controlled by the external pump field. Through a full quantum description of the system Hamiltonian, we identify two types of multicritical points in the phase diagram, both of which exhibit controllable nonreciprocity. These results open a new door for all-optical manipulation of superradiant transitions and multicritical behaviors in light-matter systems, with potential applications in engineering various integrated nonreciprocal quantum devices.

10.
Front Microbiol ; 15: 1367658, 2024.
Article in English | MEDLINE | ID: mdl-38737410

ABSTRACT

Introduction: Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods: In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion: Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.

11.
Blood ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728378

ABSTRACT

B-cell maturation antigen (BCMA)-targeting therapeutics have dramatically improved outcomes in relapsed/refractory multiple myeloma (RRMM). However, whether the mechanisms of resistance between these therapies are shared and how the identification of such mechanisms before therapy initiation could refine clinical decision-making remains undefined. We analyzed outcomes for 72 RRMM patients treated with teclistamab, a CD3 x BCMA bispecific antibody (BsAb), 42% (30/72) of whom had prior BCMA-directed therapy exposure. Malignant plasma cell BCMA expression was present in all BCMA therapy-naïve patients. Prior therapy-mediated loss of plasma cell BCMA expression before teclistamab treatment, measured by immunohistochemistry, was observed in 3 patients, none of whom responded to teclistamab, and one of whom also did not respond to ciltacabtagene autoleucel. Whole exome sequencing of tumor DNA from one patient revealed biallelic loss of TNFRSF17 following treatment with belantamab mafodotin. Low-to-undetectable peripheral blood soluble BCMA levels correlated with the absence of BCMA expression by bone marrow plasma cells. Thus, although rare, loss of BCMA expression following TNFRSF17 gene deletions can occur following any BCMA-directed therapy and prevents response to subsequent anti-BCMA-directed treatments, underscoring the importance of verifying the presence of a target antigen.

12.
Opt Lett ; 49(10): 2637-2640, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748124

ABSTRACT

Optical-resolution photoacoustic microscopy (OR-PAM) excels in precisely imaging a biological tissue based on absorption contrast. However, existing OR-PAMs are confined by fixed compromises between spatial resolution and field of view (FOV), preventing the integration of large FOV and local high-resolution within one system. Here, we present a non-telecentric OR-PAM (nTC-PAM) that empowers efficient adaptation of FOV and spatial resolution to match the multi-scale requirement of diverse biological imaging. Our method allows for a large-scale transformation in FOV and even surpassing the nominal FOV of the objective with minimal marginal degradation of the lateral resolution. We demonstrate the advantage of nTC-PAM through multi-scale imaging of the leaf phantom, mouse ear, and cortex. The results reveal that nTC-PAM can switch the FOV and spatial resolution to meet the requirements of different biological tissues, such as large-scale imaging of the whole cerebral cortex and high-resolution imaging of microvascular structures in local brain regions.


Subject(s)
Microscopy , Photoacoustic Techniques , Photoacoustic Techniques/methods , Animals , Mice , Microscopy/methods , Ear/diagnostic imaging , Ear/blood supply , Phantoms, Imaging
13.
Anal Chem ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683892

ABSTRACT

The development of sensors for detection of biomarkers exhibits an exciting potential in diagnosis of diseases. Herein, we propose a novel electrochemical sensing strategy for label-free dual-biomarker detection, which is based on the combination of stimulus-responsive molecularly imprinted polymer (MIP)-modified nanopores and a polymeric membrane chronopotentiometric sensor. The ion fluxes galvanostatically imposed on the sensing membrane surface can be blocked by the recognition reaction between the target biomarker in the sample solution and the stimulus-responsive MIP receptor in the nanopores, thus causing a potential change. By using two external stimuli (i.e., pH and temperature), the recognition abilities of the stimulus-responsive MIP receptor can be effectively modulated so that dual-biomarker label-free chronopotentiometric detection can be achieved. Using alpha fetoprotein (AFP) and prostate-specific antigen (PSA) as model biomarkers, the proposed sensor offers detection limits of 0.17 and 0.42 ng/mL for AFP and PSA, respectively.

14.
Analyst ; 149(10): 2855-2863, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602369

ABSTRACT

Polymeric membrane ion-selective electrodes (ISEs) have been widely used in environmental monitoring. However, in complicated marine environments, marine biofouling usually becomes a sticky problem for these electrodes. Herein, for the first time, a novel maintenance-free antifouling potentiometric marine sensor based on a self-polishing coating (SPC) is proposed. The SPC is synthesized by using the seeded emulsion polymerization method based on the triisopropylsilyl methacrylate monomer as the regulator of the self-renewal rate. This coating can be simply modified onto the electrode surface by drop-casting. The silyl acrylate side groups of the obtained SPC on the sensor surface can be hydrolyzed in the marine alkaline medium. The shear movement of seawater driven by sea waves, wind, gravity, or vibration removes the leftover (fouled) brittle polymer backbone and thus the fouling marine microorganisms. As a proof-of-concept experiment, a polymeric membrane Ca2+-ISE is chosen as a model. Compared to the unmodified electrode, the SPC-coated Ca2+-ISE exhibits remarkable improved antifouling properties in terms of superior anti-adhesive abilities towards marine microorganisms, such as bacterial cells and algae and excellent long-term stability even in the presence of high levels of marine microorganisms. Since no additional manual maintenance is required for maintaining the antifouling abilities of the sensor, the proposed self-polishing sensor may lay an important foundation for construction of unattended long-term potentiometric monitoring systems in real marine environments.

15.
Endokrynol Pol ; 75(2): 216-221, 2024.
Article in English | MEDLINE | ID: mdl-38646987

ABSTRACT

INTRODUCTION: Central precocious puberty (CPP) is a prevalent endocrine disorder. Research has indicated that pubertal development is linked to nutritional metabolism. Irisin, a novel myokine/adipokine, has been identified as a potential predictor of CPP in girls. This study aims to examine the relationship between serum irisin levels and CPP in boys. MATERIAL AND METHODS: An enzyme-linked immunosorbent assay (ELISA) was used to measure serum irisin levels in 32 boys diagnosed with CPP and 33 prepubertal age-matched boys as normal controls (NC). To assess the impact of body mass index (BMI) on irisin levels, both the CPP and NC groups were divided into overweight/obese and normal-weight subgroups. Spearman correlation analysis was employed to assess the connection between irisin and clinical and biochemical parameters. Additionally, a receiver operating characteristic curve was utilised to determine the optimal threshold value for irisin. RESULTS: In the normal-weight subgroups, boys with CPP exhibited elevated irisin levels compared to controls, but not in the overweight/obese subgroups. The optimal cut-off value for irisin levels to predict CPP in the normal-weight groups was 93.09 ng/mL, yielding a sensitivity of 47.6% and a specificity of 100%. Furthermore, a positive correlation was noted between irisin levels and bone age (BA), bone age advancement (BA-CA), and BMI. CONCLUSIONS: Serum irisin levels correlate with BMI and pubertal development. Given its limited sensitivity, irisin level can only be utilised as a supplementary rather than a standalone diagnostic indicator for CPP.


Subject(s)
Body Mass Index , Fibronectins , Puberty, Precocious , Humans , Male , Puberty, Precocious/blood , Fibronectins/blood , Child , Case-Control Studies
16.
Sci Total Environ ; 927: 172173, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575004

ABSTRACT

Among various remediation methods for organic-contaminated soil, thermal desorption stands out due to its broad treatment range and high efficiency. Nonetheless, analyzing the contribution of factors in complex soil remediation systems and deducing the results under multiple conditions are challenging, given the complexities arising from diverse soil properties, heating conditions, and contaminant types. Machine learning (ML) methods serve as a powerful analytical tool that can extract meaningful insights from datasets and reveal hidden relationships. Due to insufficient research on soil thermal desorption for remediation of organic sites using ML methods, this study took organic pollutants represented by polycyclic aromatic hydrocarbons (PAHs) as the research object and sorted out a comprehensive data set containing >700 data points on the thermal desorption of soil contaminated with PAHs from published literature. Several ML models, including artificial neural network (ANN), random forest (RF), and support vector regression (SVR), were applied. Model optimization and regression fitting centered on soil remediation efficiency, with feature importance analysis conducted on soil and contaminant properties and heating conditions. This approach enabled the quantitative evaluation and prediction of thermal desorption remediation effects on soil contaminated with PAHs. Results indicated that ML models, particularly the RF model (R2 = 0.90), exhibited high accuracy in predicting remediation efficiency. The hierarchical significance of the features within the RF model is elucidated as follows: heating conditions account for 52 %, contaminant properties for 28 %, and soil properties for 20 % of the model's predictive power. A comprehensive analysis suggests that practical applications should emphasize heating conditions for efficient soil remediation. This research provides a crucial reference for optimizing and implementing thermal desorption in the quest for more efficient and reliable soil remediation strategies.

17.
Article in English | MEDLINE | ID: mdl-38586974

ABSTRACT

PURPOSE: Both the arthroscopic Broström-Gould and Lasso-loop stitch techniques are commonly used to treat chronic lateral ankle instability (CLAI). The purpose of this study is to introduce an arthroscopic one-step outside-in Broström-Gould (AOBG) technique and compare the mid-term outcomes of the AOBG technique and Lasso-loop stitch technique. METHODS: All CLAI patients who underwent arthroscopic lateral ankle stabilization surgery in our department from 2018 to 2019 were retrospectively enrolled. The patients were divided into two groups according to the surgical methods employed: the AOBG technique (Group A) and the Lasso-loop technique (Group B). The visual analogue scale pain score, American Orthopaedic Foot and Ankle Society ankle hindfoot score, Tegner activity score and Karlsson-Peterson score were evaluated preoperatively and during the follow-up from June to December 2022. The surgical duration, return to sports, sprain recurrence and surgical complications were also recorded and compared. RESULTS: A total of 74 patients (Group A, n = 42; Group B, n = 32) were included in this study with a mean follow-up of 39 months. No statistically significant differences were observed in demographic parameters or follow-up time between the two groups. Postoperative clinical scores indicated a significant improvement (all with p < 0.001) with no significant difference between the two groups (not significant [n.s.]). There was no significant difference in the surgical duration (46.1 vs. 49.7 min, n.s.), return to sports (92.9% vs. 93.8%, n.s.), or sprain recurrence (4.8% vs. 6.3%, n.s.). Only two cases in Group A reported knot irritation (4.8% vs. 0, n.s.), and one case in Group A experienced local skin numbness (0 vs. 3.1%, n.s.), with no significant difference. CONCLUSION: Both the AOBG and Lasso-loop stitch techniques yielded comparable favourable mid-term outcomes and return to sports with a low rate of surgical complications. Both procedures could be feasible strategies for CLAI patients. LEVEL OF EVIDENCE: Level III.

18.
Front Public Health ; 12: 1345899, 2024.
Article in English | MEDLINE | ID: mdl-38476488

ABSTRACT

This systematic review was carried out to describe QoL and resilience in infertile patients, as well as the relationship between them, and to give a theoretical foundation for clinical practice. The databases of CNKI, Wanfang data, VIP database, PubMed, Web of Science, and Embase were searched without a time limit. A narrative synthesis of relevant articles was undertaken. This systematic review was registered on PROSPERO in advance. Of 21 studies eligible for inclusion in this review, 13 focused on the relationship between QoL and resilience, 5 on QoL influencing factors (resilience included), and 3 on mediation effect analysis on mental health (resilience as a mediator). Resilience can significantly predict the QoL of infertile patients. It seems plausible that more resilient couples will be less vulnerable to the stress of infertility. A global consortium of infertile population research could make cross-cultural comparisons of QoL and resilience possible. Future research should focus on resilience therapies. Systematic review registration: This systematic review was registered on PROSPERO in advance (CRD42023414706).


Subject(s)
Infertility , Resilience, Psychological , Humans , Quality of Life/psychology , Infertility/psychology , Mental Health
19.
Clin Ophthalmol ; 18: 659-670, 2024.
Article in English | MEDLINE | ID: mdl-38468914

ABSTRACT

Objective: Primary angle-closure glaucoma (PACG) is a globally prevalent, irreversible eye disease leading to blindness. Previous neuroimaging studies demonstrated that PACG patients were associated with gray matter function changes. However, whether the white matter(WM) function changes in PACG patients remains unknown. The purpose of the study is to investigate WM function changes in the PACG patients. Methods: In total, 40 PACG patients and 40 well-matched HCs participated in our study and underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We compared between-group differences between PACG patients and HC in the WM function using amplitude of low-frequency fluctuations (ALFF). In addition, the SVM method was applied to the construction of the PACG classification model. Results: Compared with the HC group, ALFF was attenuated in right posterior thalamic radiation (include optic radiation), splenium of corpus callosum, and left tapetum in the PACG group, the results are statistically significant (GRF correction, voxel-level P < 0.001, cluster-level P < 0.05). Furthermore, the SVM classification had an accuracy of 80.0% and an area under the curve (AUC) of 0.86 for distinguishing patients with PACG from HC. Conclusion: The findings of our study uncover abnormal WM functional alterations in PACG patients and mainly involves vision-related regions. These findings provide new insights into widespread brain damage in PACG from an alternative WM functional perspective.

20.
Small ; : e2309705, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461528

ABSTRACT

Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is crucial in the pursuit of clean and sustainable hydrogen energy, yet still challenging. Herein, a spontaneous redox strategy is reported to achieve iridium single-atoms anchored on hierarchical nanosheet-based porous Fe doped ß-Ni(OH)2 pyramid array electrodes (SAs Ir/Fe-ß-Ni(OH)2 ), which exhibits high OER performance with a low overpotential of 175 mV at 10 mA cm-2 and a remarkable OER current density in alkaline electrolyte, surpassing Fe-ß-Ni(OH)2 /NF and IrO2 by 31 and 38 times at 1.43 V versus RHE, respectively. OER catalytic mechanism demonstrates that the conversion of * OH→* O and the active lattice O content can be significantly improved due to the modulation effect of the Ir single atoms on the local electronic structure and the redox behavior of FeNi (oxy) hydroxide true active species. This work provides a promising insight into understanding the OER enhancement mechanism for Ir single-atoms modified FeNi-hydroxide systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...