Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Cancer Discov ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533987

ABSTRACT

Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress-response programs that counteract the inherent toxicity of such aberrant signaling. While inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of Protein Phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor suppressive resistance.

2.
Cell Rep Med ; 5(3): 101471, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508142

ABSTRACT

Drug-tolerant persisters (DTPs) are a rare subpopulation of cells within a tumor that can survive therapy through nongenetic adaptive mechanisms to develop relapse and repopulate the tumor following drug withdrawal. Using a cancer cell line with an engineered suicide switch to kill proliferating cells, we perform both genetic screens and compound screens to identify the inhibition of bromodomain and extraterminal domain (BET) proteins as a selective vulnerability of DTPs. BET inhibitors are especially detrimental to DTPs that have reentered the cell cycle (DTEPs) in a broad spectrum of cancer types. Mechanistically, BET inhibition induces lethal levels of ROS through the suppression of redox-regulating genes highly expressed in DTPs, including GPX2, ALDH3A1, and MGST1. In vivo BET inhibitor treatment delays tumor relapse in both melanoma and lung cancer. Our study suggests that combining standard of care therapy with BET inhibitors to eliminate residual persister cells is a promising therapeutic strategy.


Subject(s)
Lung Neoplasms , Neoplasm Recurrence, Local , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics
3.
Lasers Med Sci ; 39(1): 74, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383895

ABSTRACT

Low-level light therapy (LLLT), also known as photo biomodulation (PBM), is a type of optical therapy that uses red or near-infrared lasers or light-emitting diodes (LEDs) for medical treatment. The laser wavelengths involved in PBM typically range between 600-700 nm and 780-1100 nm, with power densities ranging between 5 mW/cm2 and 5 W/cm2. PBM is a series of biochemical cascades exhibited by biological tissues after absorbing a certain amount of energy from light. PBM has been widely used in clinical practice in the past 20 years, and numerous clinical trials have demonstrated its biological efficacy. However, the underlying mechanisms have not yet been fully explored. In this paper, we have summarized the research into PBM over the past two decades, to identify the important mechanisms of the biological effects of PBM from the perspective of molecular mechanisms, cellular levels, and tissue changes. We hope our study provide a theoretical basis for future investigations into the underlying mechanisms.


Subject(s)
Lasers , Low-Level Light Therapy , Light
4.
Cancer Cell ; 42(2): 180-197, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38350421

ABSTRACT

The past decade has witnessed significant advances in the systemic treatment of advanced hepatocellular carcinoma (HCC). Nevertheless, the newly developed treatment strategies have not achieved universal success and HCC patients frequently exhibit therapeutic resistance to these therapies. Precision treatment represents a paradigm shift in cancer treatment in recent years. This approach utilizes the unique molecular characteristics of individual patient to personalize treatment modalities, aiming to maximize therapeutic efficacy while minimizing side effects. Although precision treatment has shown significant success in multiple cancer types, its application in HCC remains in its infancy. In this review, we discuss key aspects of precision treatment in HCC, including therapeutic biomarkers, molecular classifications, and the heterogeneity of the tumor microenvironment. We also propose future directions, ranging from revolutionizing current treatment methodologies to personalizing therapy through functional assays, which will accelerate the next phase of advancements in this area.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/drug therapy , Immunotherapy/methods , Tumor Microenvironment
5.
Gastroenterology ; 166(6): 1130-1144.e8, 2024 06.
Article in English | MEDLINE | ID: mdl-38262581

ABSTRACT

BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.


Subject(s)
Adaptor Proteins, Signal Transducing , Cellular Senescence , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Exportin 1 Protein , Karyopherins , Liver Neoplasms , Protein Kinase Inhibitors , Receptors, Cytoplasmic and Nuclear , Ubiquitin-Protein Ligases , Humans , Cellular Senescence/drug effects , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Ubiquitin-Protein Ligases/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Animals , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , Drug Synergism , Senotherapeutics/pharmacology , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Proteolysis/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Hep G2 Cells , Mice , Piperazines , Pyridines , Triazoles
6.
JHEP Rep ; 5(10): 100843, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37675273

ABSTRACT

Background & Aims: Exploiting key regulators responsible for hepatocarcinogenesis is of great importance for the prevention and treatment of hepatocellular carcinoma (HCC). However, the key players contributing to hepatocarcinogenesis remain poorly understood. We explored the molecular mechanisms underlying the carcinogenesis and progression of HCC for the development of potential new therapeutic targets. Methods: The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and Genotype-Tissue Expression (GTEx) databases were used to identify genes with enhanced expression in the liver associated with HCC progression. A murine liver-specific Ftcd knockout (Ftcd-LKO) model was generated to investigate the role of formimidoyltransferase cyclodeaminase (FTCD) in HCC. Multi-omics analysis of transcriptomics, metabolomics, and proteomics data were applied to further analyse the molecular effects of FTCD expression on hepatocarcinogenesis. Functional and biochemical studies were performed to determine the significance of loss of FTCD expression and the therapeutic potential of Akt inhibitors in FTCD-deficient cancer cells. Results: FTCD is highly expressed in the liver but significantly downregulated in HCC. Patients with HCC and low levels of FTCD exhibited worse prognosis, and patients with liver cirrhosis and low FTCD levels exhibited a notable higher probability of developing HCC. Hepatocyte-specific knockout of FTCD promoted both chronic diethylnitrosamine-induced and spontaneous hepatocarcinogenesis in mice. Multi-omics analysis showed that loss of FTCD affected fatty acid and cholesterol metabolism in hepatocarcinogenesis. Mechanistically, loss of FTCD upregulated peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element-binding protein 2 (SREBP2) by regulating the PTEN/Akt/mTOR signalling axis, leading to lipid accumulation and hepatocarcinogenesis. Conclusions: Taken together, we identified a FTCD-regulated lipid metabolic mechanism involving PPARγ and SREBP2 signaling in hepatocarcinogenesis and provide a rationale for therapeutically targeting of HCC driven by downregulation of FTCD. Impact and implications: Exploiting key molecules responsible for hepatocarcinogenesis is significant for the prevention and treatment of HCC. Herein, we identified formimidoyltransferase cyclodeaminase (FTCD) as the top enhanced gene, which could serve as a predictive and prognostic marker for patients with HCC. We generated and characterised the first Ftcd liver-specific knockout murine model. We found loss of FTCD expression upregulated peroxisome proliferator-activated receptor (PPAR)γ and sterol regulatory element-binding protein 2 (SREBP2) by regulating the PTEN/Akt/mTOR signalling axis, leading to lipid accumulation and hepatocarcinogenesis, and provided a rationale for therapeutic targeting of HCC driven by downregulation of FTCD.

7.
Cell Rep ; 42(3): 112164, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36857181

ABSTRACT

Intratumoral hypoxia is a microenvironmental feature that promotes breast cancer progression and is associated with cancer mortality. Plexin B3 (PLXNB3) is highly expressed in estrogen receptor-negative breast cancer, but the underlying mechanisms and consequences have not been thoroughly investigated. Here, we report that PLXNB3 expression is increased in response to hypoxia and that PLXNB3 is a direct target gene of hypoxia-inducible factor 1 (HIF-1) in human breast cancer cells. PLXNB3 expression is correlated with HIF-1α immunohistochemistry, breast cancer grade and stage, and patient mortality. Mechanistically, PLXNB3 is required for hypoxia-induced MET/SRC/focal adhesion kinase (FAK) and MET/SRC/STAT3/NANOG signaling as well as hypoxia-induced breast cancer cell migration, invasion, and cancer stem cell specification. PLXNB3 knockdown impairs tumor formation and lung metastasis in orthotopic breast cancer mouse models.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/pathology , Neoplastic Stem Cells/metabolism
9.
EBioMedicine ; 87: 104397, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36502574

ABSTRACT

BACKGROUND: Identification of tumor dependencies is important for developing therapeutic strategies for liver cancer. METHODS: A genome-wide CRISPR screen was performed for finding critical vulnerabilities in liver cancer cells. Compounds screen, RNA sequencing, and human phospho-receptor tyrosine kinase arrays were applied to explore mechanisms and search for synergistic drugs. FINDINGS: We identified mitochondrial translation-related genes associated with proliferation for liver cancer cells. Tigecycline induced deficiency of respiratory chain by disturbing mitochondrial translation process and showed therapeutic potential in liver cancer. For liver cancer cells extremely insensitive to tigecycline, a compounds screen was applied to identify MEK inhibitors as synergistic drugs to tigecycline-insensitive liver cancer cells. Mechanistically, sustained activation of EGFR-ERK1/2-MYC cascade conferred the insensitivity to tigecycline, which was mediated by enhanced secretion of EREG and AREG. Moreover, glycolytic enzymes, such as HK2 and PKM2 were upregulated to stimulate glycolysisin a MYC-dependent manner. Tigecycline induced respiratory chain deficiency in combination with cutting off EGFR-ERK1/2-MYC cascade by MEK inhibitors or EGFR inhibitors, resulting in decrease of both oxidative phosphorylation and glycolysis in liver cancer cells. INTERPRETATION: Our study proved that blocking EGFR-ERK1/2-MYC cascade combined with tigecycline could be a potential therapeutic strategy for liver cancer. FUNDING: This work was funded by grants from the National Natural Science Foundation of China (82073039,82222047, 81920108025), Program of Shanghai Academic/Technology Research Leader (22XD1423100), Shanghai Municipal Science and Technology Project (20JC1411100), 111 Project (B21024), Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20212700, SHSMU-ZDCX20210802) and Shanghai Jiao Tong University School of Medicine (YG2019GD01).


Subject(s)
Liver Neoplasms , MAP Kinase Signaling System , Humans , Tigecycline/adverse effects , Cell Line, Tumor , China , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Protein Kinase Inhibitors/adverse effects , ErbB Receptors/genetics , Mitogen-Activated Protein Kinase Kinases
10.
Nat Rev Gastroenterol Hepatol ; 20(4): 203-222, 2023 04.
Article in English | MEDLINE | ID: mdl-36369487

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common solid malignancies worldwide. A large proportion of patients with HCC are diagnosed at advanced stages and are only amenable to systemic therapies. We have witnessed the evolution of systemic therapies from single-agent targeted therapy (sorafenib and lenvatinib) to the combination of a checkpoint inhibitor plus targeted therapy (atezolizumab plus bevacizumab therapy). Despite remarkable advances, only a small subset of patients can obtain durable clinical benefit, and therefore substantial therapeutic challenges remain. In the past few years, emerging systemic therapies, including new molecular-targeted monotherapies (for example, donafenib), new immuno-oncology monotherapies (for example, durvalumab) and new combination therapies (for example, durvalumab plus tremelimumab), have shown encouraging results in clinical trials. In addition, many novel therapeutic approaches with the potential to offer improved treatment effects in patients with advanced HCC, such as sequential combination targeted therapy and next-generation adoptive cell therapy, have also been proposed and developed. In this Review, we summarize the latest clinical advances in the treatment of advanced HCC and discuss future perspectives that might inform the development of more effective therapeutics for advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Combined Modality Therapy , Sorafenib , Bevacizumab/therapeutic use
11.
Front Neurol ; 14: 1268053, 2023.
Article in English | MEDLINE | ID: mdl-38249737

ABSTRACT

Chronic progressive external ophthalmoplegia (CPEO) is a mitochondrial encephalomyopathy that is characterized by progressive ptosis and impaired ocular motility. Owing to its nonspecific clinical manifestations, CPEO is often misdiagnosed as other conditions. Herein, we present the case of a 34-year-old woman who primarily presented with incomplete left eyelid closure and limited bilateral eye movements. During the 6-year disease course, she was diagnosed with myasthenia gravis and cranial polyneuritis. Finally, skeletal muscle tissue biopsy confirmed the diagnosis. Biopsy revealed pathological changes in mitochondrial myopathy. Furthermore, mitochondrial gene testing of the skeletal muscle revealed a single chrmM:8469-13447 deletion. In addition, we summarized the findings of 26 patients with CPEO/Kearns-Sayre syndrome who were misdiagnosed with other diseases owing to ocular symptoms. In conclusion, we reported a rare clinical case and emphasized the symptomatic diversity of CPEO. Furthermore, we provided a brief review of the diagnosis and differential diagnosis of the disease.

12.
Genome Med ; 14(1): 142, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36527145

ABSTRACT

BACKGROUND: Numerous studies have used multi-region sampling approaches to characterize intra-tumor heterogeneity (ITH) in hepatocellular carcinoma (HCC). However, conventional multi-region sampling strategies do not preserve the spatial details of samples, and thus, the potential influences of spatial distribution on patient-wise ITH (represents the overall heterogeneity level of the tumor in a given patient) have long been overlooked. Furthermore, gene-wise transcriptional ITH (represents the expression pattern of genes across different intra-tumor regions) in HCC is also under-explored, highlighting the need for a comprehensive investigation. METHODS: To address the problem of spatial information loss, we propose a simple and easy-to-implement strategy called spatial localization sampling (SLS). We performed multi-region sampling and sequencing on 14 patients with HCC, collecting a total of 75 tumor samples with spatial information and molecular data. Normalized diversity score and integrated heterogeneity score (IHS) were then developed to measure patient-wise and gene-wise ITH, respectively. RESULTS: A significant correlation between spatial and molecular heterogeneity was uncovered, implying that spatial distribution of sampling sites did influence ITH estimation in HCC. We demonstrated that the normalized diversity score had the ability to overcome sampling location bias and provide a more accurate estimation of patient-wise ITH. According to this metric, HCC tumors could be divided into two classes (low-ITH and high-ITH tumors) with significant differences in multiple biological properties. Through IHS analysis, we revealed a highly heterogenous immune microenvironment in HCC and identified some low-ITH checkpoint genes with immunotherapeutic potential. We also constructed a low-heterogeneity risk stratification (LHRS) signature based on the IHS results which could accurately predict the survival outcome of patients with HCC on a single tumor biopsy sample. CONCLUSIONS: This study provides new insights into the complex phenotypes of HCC and may serve as a guide for future studies in this field.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/genetics , High-Throughput Nucleotide Sequencing , Risk Assessment , Tumor Microenvironment/genetics
13.
Sci Adv ; 8(49): eabo5000, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36490339

ABSTRACT

Hypoxia is a key characteristic of the breast cancer microenvironment that promotes expression of the transcriptional activator hypoxia-inducible factor 1 (HIF-1) and is associated with poor patient outcome. HIF-1 increases the expression or activity of stem cell pluripotency factors, which control breast cancer stem cell (BCSC) specification and are required for cancer metastasis. Here, we identify nuclear prelamin A recognition factor (NARF) as a hypoxia-inducible, HIF-1 target gene in human breast cancer cells. NARF functions as an essential coactivator by recruiting the histone demethylase KDM6A to OCT4 bound to genes encoding the pluripotency factors NANOG, KLF4, and SOX2, leading to demethylation of histone H3 trimethylated at lysine-27 (H3K27me3), thereby increasing the expression of NANOG, KLF4, and SOX2, which, together with OCT4, mediate BCSC specification. Knockdown of NARF significantly decreased the BCSC population in vitro and markedly impaired tumor initiation capacity and lung metastasis in orthotopic mouse models.


Subject(s)
Breast Neoplasms , Hypoxia-Inducible Factor 1 , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Histones/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/physiology , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism
14.
Nat Cancer ; 3(11): 1284-1299, 2022 11.
Article in English | MEDLINE | ID: mdl-36414711

ABSTRACT

Senolytics, drugs that kill senescent cells, have been proposed to improve the response to pro-senescence cancer therapies; however, this remains challenging due to a lack of broadly acting senolytic drugs. Using CRISPR/Cas9-based genetic screens in different senescent cancer cell models, we identify loss of the death receptor inhibitor cFLIP as a common vulnerability of senescent cancer cells. Senescent cells are primed for apoptotic death by NF-κB-mediated upregulation of death receptor 5 (DR5) and its ligand TRAIL, but are protected from death by increased cFLIP expression. Activation of DR5 signaling by agonistic antibody, which can be enhanced further by suppression of cFLIP by BRD2 inhibition, leads to efficient killing of a variety of senescent cancer cells. Moreover, senescent cells sensitize adjacent non-senescent cells to killing by DR5 agonist through a bystander effect mediated by secretion of cytokines. We validate this 'one-two punch' cancer therapy by combining pro-senescence therapy with DR5 activation in different animal models.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein , Neoplasms , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , Apoptosis , NF-kappa B/metabolism , Signal Transduction , Neoplasms/drug therapy
16.
Cancer Lett ; 531: 1-13, 2022 04 10.
Article in English | MEDLINE | ID: mdl-35101541

ABSTRACT

Lung cancer is the most common cancer and the leading cause of cancer deaths worldwide. In addition to coding genes, the contribution of long noncoding RNA (lncRNA) to non-small cell lung cancer (NSCLC) remains unclear. Here, we explored lncRNA expression profiles by Affymetrix Gene Chip Human Transcriptome Array 2.0 in 37 paired samples of tumorous NSCLC tissues and adjacent nontumorous tissues. We showed that LHFPL3-AS2 is a novel lncRNA, significantly decreased in NSCLC tissues. LHFPL3-AS2 was further validated in an additional 93 paired samples of NSCLC. Low levels of LHFPL3-AS2 expression were highly correlated with poor overall survival, TNM stage, and metastasis of NSCLC patients. Enhanced expression of LHFPL3-AS2 inhibited NSCLC invasion and metastasis in vitro and in vivo. Moreover, downregulation of LHFPL3-AS2 reduced its specific interaction with SFPQ, resulting in more SFPQ binding to the promoter of TXNIP and causing the transcriptional repression of TXNIP, thus finally promoting the migration and invasion of NSCLC cells. Furthermore, LHFPL3-AS2 was shown to be regulated by EGR1 under hypoxia.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/metabolism , Membrane Proteins , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
Elife ; 112022 02 22.
Article in English | MEDLINE | ID: mdl-35191375

ABSTRACT

Pharmacologic perturbation projects, such as Connectivity Map (CMap) and Library of Integrated Network-based Cellular Signatures (LINCS), have produced many perturbed expression data, providing enormous opportunities for computational therapeutic discovery. However, there is no consensus on which methodologies and parameters are the most optimal to conduct such analysis. Aiming to fill this gap, new benchmarking standards were developed to quantitatively evaluate drug retrieval performance. Investigations of potential factors influencing drug retrieval were conducted based on these standards. As a result, we determined an optimal approach for LINCS data-based therapeutic discovery. With this approach, homoharringtonine (HHT) was identified to be a candidate agent with potential therapeutic and preventive effects on liver cancer. The antitumor and antifibrotic activity of HHT was validated experimentally using subcutaneous xenograft tumor model and carbon tetrachloride (CCL4)-induced liver fibrosis model, demonstrating the reliability of the prediction results. In summary, our findings will not only impact the future applications of LINCS data but also offer new opportunities for therapeutic intervention of liver cancer.


Subject(s)
Drug Repositioning , Liver Neoplasms , Computational Biology/methods , Drug Repositioning/methods , Humans , Liver Neoplasms/drug therapy , Reproducibility of Results
18.
Mol Cancer ; 21(1): 2, 2022 01 02.
Article in English | MEDLINE | ID: mdl-34980132

ABSTRACT

BACKGROUND: In recent years, the application of functional genetic immuno-oncology screens has showcased the striking ability to identify potential regulators engaged in tumor-immune interactions. Although these screens have yielded substantial data, few studies have attempted to systematically aggregate and analyze them. METHODS: In this study, a comprehensive data collection of tumor immunity-associated functional screens was performed. Large-scale genomic data sets were exploited to conduct integrative analyses. RESULTS: We identified 105 regulator genes that could mediate resistance or sensitivity to immune cell-induced tumor elimination. Further analysis identified MON2 as a novel immune-oncology target with considerable therapeutic potential. In addition, based on the 105 genes, a signature named CTIS (CRISPR screening-based tumor-intrinsic immune score) for predicting response to immune checkpoint blockade (ICB) and several immunomodulatory agents with the potential to augment the efficacy of ICB were also determined. CONCLUSION: Overall, our findings provide insights into immune oncology and open up novel opportunities for improving the efficacy of current immunotherapy agents.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Testing/methods , Genomics/methods , Medical Oncology , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Clinical Decision-Making , Computational Biology/methods , Disease Management , Gene Expression Profiling , Gene Regulatory Networks , Humans , Immunotherapy/methods , Immunotherapy/standards , Medical Oncology/methods , Medical Oncology/standards , Prognosis , Transcriptome , Treatment Outcome
19.
Transl Lung Cancer Res ; 10(10): 3957-3972, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34858784

ABSTRACT

BACKGROUND: The biological role and clinical significance of transfer RNA-derived small RNAs (tsRNAs) remain largely unclear. The purpose of this study was to investigate the biological function, molecular mechanism, and clinical significance of tsRNA-5001a in lung adenocarcinoma. METHODS: The function of tsRNA-5001a on the growth of tumor cells was accessed by cell function experiments. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of tsRNA-5001a in paired samples of lung adenocarcinoma. Cell localization of tsRNA-5001a was performed by nuclear-cytoplasmic separation assay. Transcriptome sequencing was used to screen the molecules involved in the regulatory network of tsRNA-5001a. Independent samples t-test was used to compare the two groups. Prism software (Prism 7.0) was used to analyze the statistical results. P<0.05 was considered statistically significant. RESULTS: tsRNA-5001a was significantly upregulated in lung adenocarcinoma tissues. Upregulation of tsRNA-5001a was found to increase the risk of postoperative recurrences in patients with lung adenocarcinoma and was associated with poor prognosis. Function assay showed that overexpression tsRNA-5001a could significantly promote cell proliferation. In contrast, knockdown of tsRNA-5001a significantly inhibited the proliferation of lung adenocarcinoma cells. In addition, nucleoplasmic isolation assay indicated that tsRNA-5001a was located mainly in the cytoplasm. According to the results of RNA sequencing and The Cancer Genome Atlas database (TCGA database) analysis, growth arrest and DNA damage 45G (GADD45G) was screened and may be the target gene of tsRNA-5001a. CONCLUSIONS: tsRNA-5001a promotes the proliferation of lung adenocarcinoma cells and increases the risk of postoperative recurrences in lung adenocarcinoma patients.

20.
Genome Med ; 13(1): 166, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663432

ABSTRACT

BACKGROUND: Liver cancer is one of the most commonly diagnosed cancers and the fourth leading cause of cancer-related death worldwide. Broad-spectrum kinase inhibitors like sorafenib and lenvatinib provide only modest survival benefit to patients with hepatocellular carcinoma (HCC). This study aims to identify novel therapeutic strategies for HCC patients. METHODS: Integrated bioinformatics analyses and a non-biased CRISPR loss of function genetic screen were performed to identify potential therapeutic targets for HCC cells. Whole-transcriptome sequencing (RNA-Seq) and time-lapse live imaging were performed to explore the mechanisms of the synergy between CDC7 inhibition and ATR or CHK1 inhibitors in HCC cells. Multiple in vitro and in vivo assays were used to validate the synergistic effects. RESULTS: Through integrated bioinformatics analyses using the Cancer Dependency Map and the TCGA database, we identified ATR-CHK1 signaling as a therapeutic target for liver cancer. Pharmacological inhibition of ATR or CHK1 leads to robust proliferation inhibition in liver cancer cells having a high basal level of replication stress. For liver cancer cells that are resistant to ATR or CHK1 inhibition, treatment with CDC7 inhibitors induces strong DNA replication stress and consequently such drugs show striking synergy with ATR or CHK1 inhibitors. The synergy between ATR-CHK1 inhibition and CDC7 inhibition probably derives from abnormalities in mitosis inducing mitotic catastrophe. CONCLUSIONS: Our data highlights the potential of targeting ATR-CHK1 signaling, either alone or in combination with CDC7 inhibition, for the treatment of liver cancer.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Proteins/genetics , Checkpoint Kinase 1/genetics , DNA Replication , Liver Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Animals , Carcinoma, Hepatocellular , Cell Line, Tumor , Cell Proliferation , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...