Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Hypertens Res ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769134

ABSTRACT

To investigate the effect of rosuvastatin on gait and balance disorder progression and elucidate the role of cerebrovascular reactivity (CVR) on this effect. From April 2008 to November 2010, 943 hypertensive patients aged ≥60 years were enrolled from the Shandong area of China. Patients were randomized into rosuvastatin and placebo groups. Gait, balance, CVR, fall and stroke were assessed. During an average 72 months of follow-up, the decreasing trends for step length, step speed, and Berg balance scale scores and the increasing trends for step width and chair rising test were slower in the rosuvastatin group when compared to the placebo group. The hazard ratio of incident balance impairment and falls was 0.542 [95% confidence interval (CI) 0.442-0.663] and 0.532 (95% CI 0.408-0.694), respectively, in the rosuvastatin group compared with placebo group. For CVR progression, the cerebrovascular reserve capacity and breath-holding index were increased and the pulsatility index decreased in the rosuvastatin group, while the cerebrovascular reserve capacity and breath-holding index were decreased, and pulsatility index increased in the placebo group. The changes in gait stability and balance function were independently associated with the changes in the CVR. The odds risks of balance impairment and falls were 2.178 (95% CI: 1.491-3.181) and 3.227 (95% CI: 1.634-6.373), respectively, in the patients with CVR impairment and patients without CVR impairment. Rosuvastatin ameliorated gait and balance disorder progression in older patients with hypertension. This effect might result from the improvement in the CVR. This double-blind clinical trial recruited 943 hypertensive patients aged ≥60 years who were randomly administered rosuvastatin and placebo interventions. The data indicates that rosuvastatin significantly ameliorated the progressions of gait and balance disorders in older hypertensive patients. The cerebrovascular reactivity might play an important mediating role in this amelioration.

2.
Carbohydr Polym ; 337: 122135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710549

ABSTRACT

The biggest obstacle to treating wound healing continues to be the production of simple, inexpensive wound dressings that satisfy the demands associated with full process of repair at the same time. Herein, a series of injectable composite hydrogels were successfully prepared by a one-pot method by utilizing the Schiff base reaction as well as hydrogen bonding forces between hydroxypropyl chitosan (HCS), ε-poly-l-lysine (EPL), and 2,3,4-trihydroxybenzaldehyde (TBA), and multiple cross-links formed by the reversible coordination between iron (III) and pyrogallol moieties. Notably, hydrogel exhibits excellent physicochemical properties, including injectability, self-healing, water retention, and adhesion, which enable to fill irregular wounds for a long period, providing a suitable moist environment for wound healing. Interestingly, the excellent hemostatic properties of the hydrogel can quickly stop bleeding and avoid the serious sequelae of massive blood loss in acute trauma. Moreover, the powerful antimicrobial and antioxidant properties also protect against bacterial infections and reduce inflammation at the wound site, thus promoting healing at all stages of the wound. The study of biohydrogel with multifunctional integration of wound treatment and smart medical treatment is clarified by this line of research.


Subject(s)
Chitosan , Hemostatics , Hydrogels , Polylysine , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Polylysine/chemistry , Polylysine/pharmacology , Animals , Hemostatics/chemistry , Hemostatics/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Rats
3.
Int Wound J ; 21(5): e14888, 2024 May.
Article in English | MEDLINE | ID: mdl-38686514

ABSTRACT

Allografts derived from live-birth tissue obtained with donor consent have emerged as an important treatment option for wound and soft tissue repairs. Placental membrane derived from the amniotic sac consists of the amnion and chorion, the latter of which contains the trophoblast layer. For ease of cleaning and processing, these layers are often separated with or without re-lamination and the trophoblast layer is typically discarded, both of which can negatively affect the abundance of native biological factors and make the grafts difficult to handle. Thus, a full-thickness placental membrane that includes a fully-intact decellularized trophoblast layer was developed for homologous clinical use as a protective barrier and scaffold in soft tissue repairs. Here, we demonstrate that this full-thickness placental membrane is effectively decellularized while retaining native extracellular matrix (ECM) scaffold and biological factors, including the full trophoblast layer. Following processing, it is porous, biocompatible, supports cell proliferation in vitro, and retains its biomechanical strength and the ability to pass through a cannula without visible evidence of movement or damage. Finally, it was accepted as a natural scaffold in vivo with evidence of host-cell infiltration, angiogenesis, tissue remodelling, and structural layer retention for up to 10 weeks in a murine subcutaneous implant model.


Subject(s)
Placenta , Humans , Female , Pregnancy , Animals , Mice , Tissue Scaffolds , Freeze Drying/methods , Decellularized Extracellular Matrix , Wound Healing/physiology
4.
Environ Res ; 247: 118258, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262512

ABSTRACT

Developing efficient catalytic systems for water contamination removal is a topic of great interest. However, the use of heterogeneous catalysts faces challenges due to insufficient active sites and electron cycling. In this study, results from first-principles calculations demonstrate that dual reaction centers (DRCs) are produced around the Cu and Mn sites in Cu1.0/Mn1.0-ZnO due to the electronegativity difference. Experimental results reveal the material with DRCs greatly enhances electron transfer efficiency and significantly impacts the oxidation and reduction of peroxymonosulfate (PMS). In addition, the self-consistent potential correction (SCPC) method was introduced to correct the energy and charge of charged periodic systems simulating a catalytic process, resulting in more precise catalytic results. Specifically, the material exhibits a preference for adsorbing negatively charged PMS anions at electron-deficient Mn sites, facilitating PMS oxidation for the generation of 1O2, and PMS reduction around the electron-rich Cu for the formation of •OH and SO4•-. The major reactive oxygen species is 1O2, showcasing effective performance in various degradation systems. Overall, our work provides novel insights into the persulfate-based heterogeneous catalytic oxidation process, paving the way for the development of high-performance catalytic systems for water purification.


Subject(s)
Zinc Oxide , Peroxides , Reactive Oxygen Species , Catalysis
5.
J Geriatr Cardiol ; 20(10): 716-727, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37970224

ABSTRACT

BACKGROUND: Controversy exists as to the optimal treatment approach for ostial left anterior descending (LAD) or ostial left circumflex artery (LCx) lesions. Drug-coated balloons (DCB) may overcome some of the limitations of drug-eluting stents (DES). Therefore, we investigated the security and feasibility of the DCB policy in patients with ostial LAD or ostial LCx lesions, and compared it with the conventional DES-only strategy. METHODS: We retrospectively enrolled patients with de novo ostial lesions in the LAD or LCx who underwent interventional treatment. They were categorized into two groups based on their treatment approach: the DCB group and the DES group. The treatment strategies in the DCB group involved the use of either DCB-only or hybrid strategies, whereas the DES group utilized crossover or precise stenting techniques. Two-year target lesion revascularization was the primary endpoint, while the rates of major adverse cardiovascular events, cardiac death, target vessel myocardial infarction, and vessel thrombosis were the secondary endpoints. Using propensity score matching, we assembled a cohort with comparable baseline characteristics. To ensure result analysis reliability, we conducted sensitivity analyses, including interaction, and stratified analyses. RESULTS: Among the 397 eligible patients, 6.25% of patients who were planned to undergo DCB underwent DES. A total of 108 patients in each group had comparable propensity scores and were included in the analysis. Two-year target lesion revascularization occurred in 5 patients (4.90%) and 16 patients (16.33%) in the DCB group and the DES group, respectively (odds ratio = 0.264, 95% CI: 0.093-0.752, P = 0.008). Compared with the DES group, the DCB group demonstrated a lower major adverse cardiovascular events rate (7.84% vs. 19.39%, P = 0.017). However, differences with regard to cardiac death, non-periprocedural target vessel myocardial infarction, and definite or probable vessel thrombosis between the groups were non-significant. CONCLUSIONS: The utilization of the DCB approach signifies an innovative and discretionary strategy for managing isolated ostial lesions in the LAD or LCx. Nevertheless, a future randomized trial investigating the feasibility and safety of DCB compared to the DES-only strategy specifically for de novo ostial lesions in the LAD or LCx is highly warranted.

6.
Heliyon ; 9(10): e19786, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37771526

ABSTRACT

Atmospheric mercury plays a crucial role in the biogeochemical cycle of mercury. This study conducted an intensive measurement of atmospheric mercury from 2015 to 2018 at a regional site in eastern China. During this period, the concentration of particle-bound mercury (PBM) decreased by 13%, which was much lower than those of gaseous elemenral mercury (GEM, 30%) and reactive gaseous mercury (GOM, 62%). The gradual decrease in the correlation between PBM and CO, K, and Pb indicates that the influence of primary emissions on PBM concentration was weakening. Moreover, the value of the partitioning coefficient (Kp) increased gradually from 0.05 ± 0.076 m3/µg in 2015 to 0.16 ± 0.37 m3/µg in 2018, indicating that GOM was increasingly inclined to adsorb onto particulate matter. Excluding the influence of meteorological conditions and the primary emissions, the change in aerosol composition is designated as the main trigger factor for the increasing gas-particle partitioning of reactive mercury (RM). The increasing ratio of Cl-, NO3-, and organics (Org) in the chemical composition of particle matters (PM2.5), as well as the decrease in the proportion of SO42-, NH4+, and K+, are conducive to the adsorption of GOM onto particles, forming PBM, which led to an increase of Kp and a lag of PBM reduction compared to GEM and GOM under the continuous control measures of anthropogenic mercury emissions. The evolution of aerosol compositions in recent years affects the migration and transformation of atmospheric mercury, which in turn can affect the biogeochemical cycle of mercury.

7.
Front Aging Neurosci ; 15: 1209863, 2023.
Article in English | MEDLINE | ID: mdl-37600512

ABSTRACT

Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-ß. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.

8.
J Oral Microbiol ; 15(1): 2243067, 2023.
Article in English | MEDLINE | ID: mdl-37546377

ABSTRACT

Background: Dental caries is a multifactorial disease, and the bacteria such as Streptococcus mutans (S. mutans) is one of the risk factors. The poor effect of existing anti-bacterial is mainly related to drug resistance, the short time of drug action, and biofilm formation. Methods: To address this concern, we report here on the cinnamaldehyde (CA) loaded chitosan (CS) nanocapsules (CA@CS NC) sustained release CA for antibacterial treatment. The size, ζ-potential, and morphology were characterized. The antibacterial activities in vitro were studied by growth curve assay, pH drop assay, biofilm assay, and qRT-PCR In addition, cytotoxicity assay, organ index, body weight, and histopathology results were analyzed to evaluate the safety and biocompatibility in a rat model. Results: CA@CS NC can adsorb the bacterial membrane due to electronic interaction, releasing CA slowly for a long time. At the same time, it has reliable antibacterial activity against S. mutans and downregulated the expression levels of QS, virulence, biofilm, and adhesion genes. In addition, it greatly reduced the cytotoxicity of CA and significantly inhibited dental caries in rats without obvious toxicity. Conclusion: Our results showed that CA@CS NC had antibacterial and antibiofilm effects on S. mutans and inhibit dental caries. Besides, it showed stronger efficacy and less toxicity, and was able to adsorb bacteria releasing CA slowly, providing a new nanomaterial solution for the treatment of dental caries.

9.
Sci Total Environ ; 898: 165328, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37423276

ABSTRACT

A one-year observation of aerosols on a remote island was conducted and saccharides were applied to reveal the behaviors of organic aerosol in the East China Sea (ECS). The seasonal fluctuations of total saccharides were relatively small, with annual mean concentration of 64.82 ± 26.88 ng/m3, contributing 10.20 % and 4.90 % to WSOC and OC, respectively. However, the individual species showed significant seasonal variations due to the differences in both the emission sources and the influencing factors between marine and terrestrial areas. Anhydrosugars was the highest species and showed little diurnal variation in air mass from land areas. Primary sugars and primary sugar alcohols showed higher concentrations in blooming spring and summer and were higher in daytime than nighttime due to intense biogenic emissions both in marine and mainland areas. Accordingly, secondary sugar alcohols showed obvious different diurnal variation with ratios of day/night reducing to 0.86 in summer but even increasing to 1.53 in winter, attributing to the additional impact of secondary transmission process. Source appointment suggested that biomass burning emission (36.41 %) and biogenic emission (43.17 %) were the main causes of organic aerosol, while anthropogenic related secondary process and sea salt injection accounted for 13.57 % and 6.85 %, respectively. We further elucidate that the biomass burning emission might be underestimated, as levoglucosan undergoes degradation processes in the atmosphere, which are affected by various atmospheric physicochemical factors, and the degradation degree is particularly severe in remote areas like the oceans. In addition, significantly low ratio of levoglucosan to mannosan (L/M) occurred in air mass from marine area, indicating that levoglucosan was likely be more fully aged after hovering over a large-scale of oceanic area.

10.
Front Cardiovasc Med ; 10: 1122290, 2023.
Article in English | MEDLINE | ID: mdl-37388642

ABSTRACT

Background: Coronary artery calcification (CAC) is associated with high rates of restenosis and adverse clinical events after percutaneous coronary intervention (PCI) with drug-eluting stents (DES). Objectives: The aim of this study was to evaluate the long-term clinical outcomes of drug-coated balloon (DCB)-only treatment for de novo lesions with and without CAC. Methods: Patients with de novo coronary disease treated with the DCB-only strategy were retrospectively enrolled from three centers and categorized into a CAC group and a non-CAC group. The primary endpoint was the target lesion failure (TLF) rate during the 3-year follow-up. Secondary endpoints included the occurrence of major adverse cardiac events (MACEs), target lesion revascularization (TLR), cardiac death, myocardial infarction (MI) and any revascularization. Propensity score matching (PSM) was conducted to assemble a cohort of patients with similar baseline characteristics. Results: A total of 1,263 patients with 1,392 lesions were included, and 243 patients were included in each group after PSM. Compared with the non-CAC group, the incidence rates of TLF (9.52% vs. 4.94%, odds ratio [OR]: 2.080; 95% confidence interval [CI]: 1.083-3.998, P = 0.034) and TLR (7.41% vs. 2.88%, OR: 2.642; 95% CI: 1.206-5.787, P = 0.020) in the CAC group were higher. The incidence rates of MACE (12.35% vs. 7.82%, OR: 1.665; 95% CI: 0.951-2.916, P = 0.079), cardiac death (2.06% vs. 2.06%, OR: 0.995; 95% CI: 0.288-3.436, P = 0.993), MI (1.23% vs. 0.82%, OR: 2.505; 95% CI: 0.261-8.689, P = 0.652) and any revascularization (12.76% vs. 9.67%, OR: 1.256; 95% CI: 0.747-2.111, P = 0.738) were similar between groups. Conclusions: CAC increased the incidence of TLF and TLR without a substantial increase in the risk of MACE, cardiac death, MI, or any revascularization in patients treated with DCB-only angioplasty during the 3-year follow-up.

11.
Front Physiol ; 14: 1206211, 2023.
Article in English | MEDLINE | ID: mdl-37324387

ABSTRACT

One of the main reasons impeding wound healing is wound infection caused by bacterial colonization with a continuous stage of inflammation. Traditional wound treatments like gauze are being replaced by tissue adhesives with strong wet tissue adhesion and biocompatibility. Herein, a fast-crosslinking hydrogel is developed to achieve both strong antimicrobial properties and excellent biocompatibility. In this study, a simple and non-toxic composite hydrogel was prepared by the Schiff base reaction between the aldehyde group of 2,3,4-trihydroxybenzaldehyde (TBA) and the amino group of ε-Poly-L-lysine (EPL). Subsequently, a succession of experiments toward this new hydrogel including structure characterization, antimicrobial properties, cell experiment and wound healing were applied. The results of the experiments show that the EPL-TBA hydrogel not only exhibited excellent contact-active antimicrobial activities against Gram-negative bacteria Escherichia coli (E. coil) and Gram-positive Bacteria Staphylococcus aureus (S. aureus), but also inhibited the biofilm formation. More importantly, the EPL-TBA hydrogel promoted the wound healing with low cytotoxicity in vivo. These findings indicate that the EPL-TBA hydrogel has a promising use as a wound dressing in the bacterial infection prevention and wounds healing acceleration.

12.
Tissue Eng Regen Med ; 20(5): 725-737, 2023 08.
Article in English | MEDLINE | ID: mdl-37249837

ABSTRACT

BACKGROUND: Despite the progress in perinatal-neonatal medicine, complications of extremely preterm infants continue to constitute the major adverse outcomes in neonatal intensive care unit. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells (HUMSCs) may offer new hope for the treatment of intractable neonatal disorders. This study will explore the functional differences of HUMSCs between extremely preterm and term infants. METHODS: UMSCs from 5 extremely preterm infants(weeks of gestation: 22+5 w,24+4 w,25+3 w,26 w,28 w) and 2 term infants(39 w,39+2 w) were isolated, and mesenchymal markers, pluripotent genes, proliferation rate were analyzed. HUVECs were injured by treated with LPS and repaired by co-cultured with HUMSCs of different gestational ages. RESULTS: All HUMSCs showed fibroblast-like adherence to plastic and positively expressed surface marker of CD105,CD73 and CD90, but did not expressed CD45,CD34,CD14,CD79a and HLA-DR; HUMSCs in extremely preterm exhibited significant increase in proliferation as evidenced by CCK8, pluripotency markers OCT-4 tested by RT-PCR also showed increase. Above all, in LPS induced co-cultured inflame systerm, HUMSCs in extremely preterm were more capable to promote wound healing and tube formation in HUVEC cultures, they promoted TGFß1 expression and inhibited IL6 expression. CONCLUSIONS: Our results suggest that HUMSCs from extremely preterm infants may be more suitable as candidates in cell therapy for the preterm infants.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Infant, Newborn , Pregnancy , Female , Humans , Infant, Extremely Premature , Lipopolysaccharides , Umbilical Cord
13.
Sci Total Environ ; 886: 163863, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37142044

ABSTRACT

As a potent climate forcer, black carbon (BC) optical properties can have significant impacts on the regional meteorology and climate. To unveil the seasonal differences of BC and its contribution by various emission sources, a one-year continuous monitoring of atmospheric aerosols was conducted at a background coastal site in Eastern China. By comparing the seasonal and diurnal patterns between BC and elemental carbon, we observed that BC were evidently aged with varying extents among all four seasons. The light absorption enhancement of BC (Eabs) was calculated as 1.89 ± 0.46, 2.40 ± 0.69, 1.91 ± 0.60, and 1.34 ± 0.28, from spring to winter, respectively, indicating that BC was more aged in summer. Contrary to the negligible impact of pollution levels on Eabs, the patterns of air masses arriving to the sampling site had a significant impact on the seasonal optical characteristics of BC. Sea breezes evidently exhibited higher Eabs than land-sourced breezes, and BC was more aged and light-absorbing with an increased contribution of marine airflows. By applying a receptor model, we resolved six emission sources as ship emission, traffic emission, secondary pollution, coal combustion, sea salt, and mineral dust. The mass absorption efficiency of BC for each source was estimated, showing the highest from the ship emission sector. This explained the highest Eabs observed in summer and sea breezes. Our study highlights that curbing emission from shipping activities is beneficial for reducing the warming effect of BC in coastal areas, particularly in the context of future rapid development of international shipping.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , Climate , Seasons , Carbon/analysis , China , Aerosols/analysis , Soot/analysis
14.
Front Cardiovasc Med ; 10: 1045859, 2023.
Article in English | MEDLINE | ID: mdl-36937919

ABSTRACT

Background: Data on drug-coated balloons (DCB) for de novo coronary chronic total occlusion (CTO) are limited. We aimed to investigate the long-term outcomes of substitution of drug-eluting stents (DES) by DCB. Methods: We compared the outcomes of less DES strategy (DCB alone or combined with DES) and DES-only strategy in treating de novo coronary CTO in this prospective, observational, multicenter study. The primary endpoints were major adverse cardiovascular events (MACE), target vessel revascularization, myocardial infarction, and death during 3-year follow-up. The secondary endpoints were late lumen loss (LLL) and restenosis until 1-year after operation. Results: Of the 591 eligible patients consecutively enrolled between January 2015 and December 2019, 281 (290 lesions) were treated with DCB (DCB-only or combined with DES) and 310 (319 lesions) with DES only. In the DCB group, 147 (50.7%) lesions were treated using DCB-only, and the bailout stenting rate was relatively low (3.1%). The average stent length per lesion in the DCB group was significantly shorter compared with the DES-only group (21.5 ± 25.5 mm vs. 54.5 ± 26.0 mm, p < 0.001). A total of 112 patients in the DCB group and 71 patients in the DES-only group (38.6% vs. 22.3%, p < 0.001) completed angiographic follow-up until 1-year, and LLL was much less in the DCB group (-0.08 ± 0.65 mm vs. 0.35 ± 0.62 mm, p < 0.001). There were no significant differences in restenosis occurrence between the two groups (20.5% vs. 19.7%, p > 0.999). The Kaplan-Meier estimates of MACE at 3-year (11.8% vs. 12.0%, log-rank p = 0.688) was similar between the groups. Conclusion: Percutaneous coronary intervention with DCB is a potential "stent-less" therapy for de novo CTO lesions with satisfactory long-term clinical results compared to the DES-only approach.

15.
Sci Total Environ ; 863: 160895, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36539088

ABSTRACT

Water soluble organic nitrogen (WSON) had great influences on the aerosol chemistry, hygroscopicity, marine primary productivity, as well as nitrogen biogeochemical cycles. Aerosol sampling was conducted over an offshore island in the East China Sea in four seasons of 2019, aiming to reveal the seasonal sources and secondary formation processes of marine WSON. The annual mean WSON concentration reached 1.05 ± 1.72 µg/m3 with a mean WSON/WSTN fraction of 27 %. In spring, WSON was associated with combustion emissions. The liquid-phase reaction of NH3/NH4+ with VOCs was a potential secondary formation process of WSON. In summer, WSON was mainly formed through the gaseous phase oxidation of marine biogenic precursors. In autumn, WSON showed miscellaneous sources from agricultural activities, biomass burning, and fossil fuel combustion. In addition to the contribution from primary urea, WSON could be also affected by the oxidation of biological proteinaceous matters. This explained the highest WSON concentrations and WSON/WSOC ratios in autumn. In winter, WSON was probably emitted from sea spray aerosols via the bubble-bursting processes. This study indicated that the sources of WSON over the coastal waters in the East China Sea were quite diverse, highlighting the need of more detailed characterization of marine WSON at the molecular level.

16.
Phys Med Rehabil Clin N Am ; 34(1): 49-61, 2023 02.
Article in English | MEDLINE | ID: mdl-36410890

ABSTRACT

Orthobiologic procedures are based on altering the microenvironment of musculoskeletal tissues to induce an anti-inflammatory effect and reduce pain, promote healing of these tissues, or provide mechanical support. Allograft tissues have these inherent qualities and can be used as such. This could provide patients whose own autologous tissues may be compromised or have contraindications to harvesting an alternative to treat their orthopedic conditions. Although these allograft therapies are promising, they lack high-quality clinical studies and regulatory guidelines currently limit their use.


Subject(s)
Musculoskeletal Diseases , Humans , Wound Healing , Allografts
17.
Apoptosis ; 28(1-2): 124-135, 2023 02.
Article in English | MEDLINE | ID: mdl-36241947

ABSTRACT

The Notch signaling pathway is related to endothelial dysfunction in coronary atherosclerosis. Our objective was to explore the role of Notch signaling in coronary microvascular dysfunction (CMD). CMD models were constructed by sodium laurate injection in vivo and homocysteine (Hcy) stimulation in vitro. The binding ability of Notch Intracellular Domain (NICD)/H3K9Ac/GCN5 (General Control Non-derepressible 5) to Neuregulin-1 (Nrg-1) promoter was examined by chromatin immunoprecipitation. Immunofluorescence staining was conducted to detect CD31 positive cells, NICD localization, and co-localization of NICD and GCN5. Flow cytometry and Tunel staining were conducted to identify the apoptosis. Hematoxylin and eosin staining, quantitative real-time PCR, western blot, immunohistochemical staining, co-immunoprecipitation, and double luciferase report analysis were also conducted. Notch signaling pathway-related protein levels were decreased, levels of Nrg-1 and the phosphorylation of ErbB2 and ErbB4 were enhanced in CMD models. Interference with Nrg-1 further increased the apoptosis in Hcy-induced cardiac microvascular endothelial cells (CMECs). Meanwhile, the activation of the Notch signaling pathway increased the levels of Nrg-1 and the phosphorylation of ErbB2 and ErbB4, as well as inhibited the apoptosis induced by Hcy. Furthermore, NICD and histone acetyltransferase enzyme GCN5 could regulate Nrg-1 promoter activity by affecting the expression of acetylation-modified protein H3K9Ac. In addition, NICD also interacted with GCN5. In vivo results also confirmed that the activation of the Notch signal alleviated CMD. Notch signaling pathway regulates Nrg-1 level through synergistic interaction with GCN5, thereby mitigating CMD.


Subject(s)
Endothelial Cells , Myocardial Ischemia , Humans , Endothelial Cells/metabolism , Neuregulin-1/metabolism , Neuregulin-1/pharmacology , Histone Code , Apoptosis , Signal Transduction , Receptor, ErbB-4/metabolism , Myocardial Ischemia/metabolism , Receptor, Notch1
18.
BMC Bioinformatics ; 23(1): 521, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36471248

ABSTRACT

BACKGROUND: Protein-protein interactions are widespread in biological systems and play an important role in cell biology. Since traditional laboratory-based methods have some drawbacks, such as time-consuming, money-consuming, etc., a large number of methods based on deep learning have emerged. However, these methods do not take into account the long-distance dependency information between each two amino acids in sequence. In addition, most existing models based on graph neural networks only aggregate the first-order neighbors in protein-protein interaction (PPI) network. Although multi-order neighbor information can be aggregated by increasing the number of layers of neural network, it is easy to cause over-fitting. So, it is necessary to design a network that can capture long distance dependency information between amino acids in the sequence and can directly capture multi-order neighbor information in protein-protein interaction network. RESULTS: In this study, we propose a multi-hop neural network (LDMGNN) model combining long distance dependency information to predict the multi-label protein-protein interactions. In the LDMGNN model, we design the protein amino acid sequence encoding (PAASE) module with the multi-head self-attention Transformer block to extract the features of amino acid sequences by calculating the interdependence between every two amino acids. And expand the receptive field in space by constructing a two-hop protein-protein interaction (THPPI) network. We combine PPI network and THPPI network with amino acid sequence features respectively, then input them into two identical GIN blocks at the same time to obtain two embeddings. Next, the two embeddings are fused and input to the classifier for predict multi-label protein-protein interactions. Compared with other state-of-the-art methods, LDMGNN shows the best performance on both the SHS27K and SHS148k datasets. Ablation experiments show that the PAASE module and the construction of THPPI network are feasible and effective. CONCLUSIONS: In general terms, our proposed LDMGNN model has achieved satisfactory results in the prediction of multi-label protein-protein interactions.


Subject(s)
Neural Networks, Computer , Proteins , Amino Acid Sequence , Proteins/metabolism , Protein Interaction Maps , Amino Acids/metabolism
19.
Front Cardiovasc Med ; 9: 1028007, 2022.
Article in English | MEDLINE | ID: mdl-36407423

ABSTRACT

Aims: An increasing body of evidence suggests that drug-coated balloon (DCB) angioplasty represents a valuable option for revascularization in selected patients with coronary bifurcation disease. However, there remains a paucity of real-world observational evidence on the efficacy of DCB in left main (LM) true bifurcation lesion. We compared clinical and angiographic outcomes of hybrid [DCB + drug-eluting stent (DES)] versus DES-only strategy (provisional stenting or two-stent strategies) in de novo LM true bifurcated lesions. Methods: The primary endpoint was the 2-year composite rate of target lesion failure (TLF): cardiac death, target vessel myocardial infarction (TVMI), or clinically driven target lesion revascularization (CD-TLR). A routine 1-year angiographic follow-up was scheduled. Propensity-score matching was utilized to assemble a cohort of patients with similar baseline characteristics. Results: Among 1077 eligible patients, 199 who received DCB treatment and 398 who were assigned to DES therapy had similar propensity scores and were included in the analysis. TLF within 2 years occurred in 13 patients (7.56%) assigned to DCB group, and 52 patients (14.36%) assigned to DES group (odds ratio: 0.487; 95% confidence interval: 0.258-0.922; P = 0.025; Log-rank P = 0.024). Compared with the DES group, the DCB group resulted in a lower rate of CD-TLR (2.91% vs. 9.42%; P = 0.007). Cardiac death, TVMI, all-cause mortality, and stent thrombosis were comparable between both groups. Patients treated with DES-only were associated with a higher late lumen loss (0.42 ± 0.62 mm vs. 0.13 ± 0.42 mm, P < 0.001) compared with the DCB group at 1 year. In sensitivity analysis, the DCB group also presented a lower incidence of TLF, CD-TLR and stent thrombosis both compared to the two-stent strategy and compared to provisional stenting (Ps < 0.05). Conclusion: The 2-year results of PCI utilizing DCB for LM true bifurcation lesions are superior to employing DES alone in terms of safety and effectiveness.

20.
Biomed Opt Express ; 13(10): 5344-5357, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36425637

ABSTRACT

Zebrafish is one of the ideal model animals to study the structural and functional heterogeneities in development. However, the lack of high throughput 3D imaging techniques has limited studies to only a few samples, despite zebrafish spawning tens of embryos at once. Here, we report a light-sheet flow imaging system (LS-FIS) based on light-sheet illumination and a continuous flow imager. LS-FIS enables whole-larva 3D imaging of tens of samples within half an hour. The high throughput 3D imaging capability of LS-FIS was demonstrated with the developmental study of the zebrafish vasculature from 3 to 9 days post-fertilization. Statistical analysis shows significant variances in trunk vessel development but less in hyaloid vessel development.

SELECTION OF CITATIONS
SEARCH DETAIL
...