Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis Rep ; 8(1): 561-574, 2024.
Article in English | MEDLINE | ID: mdl-38746630

ABSTRACT

Background: Alzheimer's disease may be effectively treated with acupoint-based acupuncture, which is acknowledged globally. However, more research is needed to understand the alterations in acupoints that occur throughout the illness and acupuncture treatment. Objective: This research investigated the differences in acupoint microcirculation between normal mice and AD animals in vivo. This research also examined how acupuncture affected AD animal models and acupoint microcirculation. Methods: 6-month-old SAMP8 mice were divided into two groups: the AD group and the acupuncture group. Additionally, SAMR1 mice of the same month were included as the normal group. The study involved subjecting a group of mice to 28 consecutive days of acupuncture at the ST36 (Zusanli) and CV12 (Zhongwan) acupoints. Following this treatment, the Morris water maze test was conducted to assess the mice's learning and memory abilities; the acoustic-resolution photoacoustic microscope (AR-PAM) imaging system was utilized to observe the microcirculation in CV12 acupoint region and head-specific region of each group of mice. Results: In comparison to the control group, the mice in the AD group exhibited a considerable decline in their learning and memory capabilities (p < 0.01). In comparison to the control group, the vascular in the CV12 region and head-specific region in mice from the AD group exhibited a considerable reduction in length, distance, and diameter r (p < 0.01). The implementation of acupuncture treatment had the potential to enhance the aforementioned condition to a certain degree. Conclusions: These findings offered tangible visual evidence that supports the ongoing investigation into the underlying mechanisms of acupuncture's therapeutic effects.

2.
Carbohydr Polym ; 334: 121934, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553248

ABSTRACT

The development of highly effective chitosan-based hemostatic materials that can be utilized for deep wound hemostasis remains a considerable challenge. In this study, a hemostatic antibacterial chitosan/N-hydroxyethyl acrylamide (NHEMAA)/Ti3C2Tx (CSNT) composite cryogel was facilely prepared through the physical interactions between the three components and the spontaneous condensation of NHEMAA. Because of the formation of strong crosslinked network, the CSNT cryogel showed a developed pore structure (~ 99.07 %) and superfast water/blood-triggered shape recovery, enabling it to fill the wound after contacting the blood. Its capillary effect, amino groups, negative charges, and affinity with lipid collectively induced rapid hemostasis, which was confirmed by in vitro and in vivo analysis. In addition, CSNT cryogel showed excellent photothermal antibacterial activities, high biosafety, and in vivo wound healing ability. Furthermore, the presence of chitosan effectively prevented the oxidation of MXene, thus enabling the long-term storage of the MXene-reinforced cryogel. Thus, our hemostatic cryogel demonstrates promising potential for clinical application and commercialization, as it combines high resilience, rapid hemostasis, efficient sterilization, long-term storage, and easy mass production.


Subject(s)
Chitosan , Hemostatics , Nitrites , Transition Elements , Humans , Acrylamide , Anti-Bacterial Agents/pharmacology , Cryogels , Hemostasis , Hemostatics/pharmacology
3.
Environ Sci Pollut Res Int ; 30(11): 32095-32107, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36462080

ABSTRACT

Visible-light-driven magnetic heterojunction as a promising photocatalysts has received much attention in environmental remediation. In this work, novel Z-scheme heterojunction MnZnFe2O4@Ag3PO4 (MZFO@APO) magnetic photocatalysts with excellent visible-light-driven photocatalytic activity are successfully constructed and characterized. The photocatalytic activity for phenol degradation is measured, and photodegradation mechanism is investigated with EPR, radical trapping experiments, and LC-MS. It turns out that the heterojunction introduced MZFO exhibits good adsorption effect on visible light and the direct Z-scheme bandgap alignment of MZFO and APO significantly improves charge separation and electron transfer, outperforming that of pure APO. MZFO@APO-40% with 40% APO content shows the rapid photodegradation performance, obtaining a 100% removal efficiency of phenol (25 mg L-1) after 12-min visible light irradiation, and its kinetic constants are approximately 25.3 and 4.9 times higher than that of P25 TiO2 and pure APO, respectively. Especially, MZFO@APO-40% also possesses a high magnetic separation property and can be efficiently reused for 5 cycles. Additionally, EPR and radical trapping experiments confirm that h+, O2-, and 1O2 are the main active species in the photocatalytic process. Hydroquinone and small molecular organic acids such as maleic acid and oxalic acid are detected by LC-MS, which further indicates that the pathway of phenol degradation involves hydroxylation, open-ring reactions, and mineralization reactions. The novel addition of MZFO in photocatalyst construction has the potential to promote its application in environmental remediation.


Subject(s)
Light , Electron Transport , Hydroxylation , Kinetics , Adsorption
4.
IEEE Trans Neural Netw Learn Syst ; 33(7): 2768-2780, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33378267

ABSTRACT

Generative adversarial networks (GANs), which are famous for the capability of learning complex underlying data distribution, are, however, known to be tricky in the training process, which would probably result in mode collapse or performance deterioration. Current approaches of dealing with GANs' issues almost utilize some practical training techniques for the purpose of regularization, which, on the other hand, undermines the convergence and theoretical soundness of GAN. In this article, we propose to stabilize GAN training via a novel particle-based variational inference-Langevin Stein variational gradient descent (LSVGD), which not only inherits the flexibility and efficiency of original SVGD but also aims to address its instability issues by incorporating an extra disturbance into the update dynamics. We further demonstrate that, by properly adjusting the noise variance, LSVGD simulates a Langevin process whose stationary distribution is exactly the target distribution. We also show that LSVGD dynamics has an implicit regularization, which is able to enhance particles' spread-out and diversity. Finally, we present an efficient way of applying particle-based variational inference on a general GAN training procedure no matter what loss function is adopted. Experimental results on one synthetic data set and three popular benchmark data sets-Cifar-10, Tiny-ImageNet, and CelebA-validate that LSVGD can remarkably improve the performance and stability of various GAN models.

5.
J Environ Manage ; 302(Pt B): 114120, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34794055

ABSTRACT

Green, simple and high value-adding technology is crucial for realizing waste batteries recycling. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O (MZFO@ZMO) heterojunctions are prepared from waste Mn-Zn batteries via a green bioleaching and sample co-precipitation method. The as-prepared catalysts with different Zn0.9Mn0.1O weight percentage (25%, 50% and 75%) have been comprehensively characterized in structure, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that MZFO@ZMO heterojunctions with the core-shell structure, demonstrates excellent absorption intensity in the visible light region, outperforming that of individual ZnO and Zn0.9Mn0.1O. Especially, the staggered bandgap alignment of Mn0.6Zn0.4Fe2O4 and Zn0.9Mn0.1O greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@50%-ZMO shows the highest photodegradation performance toward methylene blue (MB) under the visible light irradiation, with a 99.7% of photodegradation efficiency of 20 mg L-1 of MB within 90 min, and its reactive kinetic constants is about 7.2, 10.8 and 21.7 times higher than that of Zn0.9Mn0.1O, P25 TiO2 and Mn0.6Zn0.4Fe2O4, respectively. The MB photocatalytic mechanism is investigated in the scavenger and 5,5-dimethylpyrroline-N-oxide (DMPO) spin-trapping electron spin resonance (ESR) experiments, and h+ and *O2- are identified as the major active species for MB degradation. In addition, MZFO@50%-ZMO also exhibits a good reusability and high magnetic separation properties after six successive cycles. This new material indicates the advantages of low costs, simple reuse and great potential in application.


Subject(s)
Electric Power Supplies , Light , Catalysis , Zinc
6.
Chemosphere ; 287(Pt 2): 132238, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826927

ABSTRACT

Magnetic binary heterojunctions are a kind of promising photocatalysts due to their high catalytic activity and easy magnetic separation; however, their synthesis may involve high costs or secondary environmental impacts. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn1-xMnxS (MZFO@Zn1-xMnxS, x = 0.00-0.07) photocatalysts are synthesized from spent batteries via a green biocheaching and egg white-assisted hydrothermal method. The as-synthesized photocatalysts have been comprehensively characterized in phase, morphology, texture, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that the desired core-shell structure MZFO@Zn1-xMnxS composites are successfully synthesized, theirs absorption intensity in the visible light region is greatly enhanced compared to Zn1-xMnxS. In addition, doped Mn2+ in ZnS host lattice and the staggered bandgap alignment of MZFO and Zn1-xMnxS greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@Zn0.95Mn0.05S shows the highest photodegradation performance toward phenol under the visible light irradiation, with a complete degradation of 25 mg L-1 of phenol within 120 min, and its reactive kinetic constants is about 5.2 and 13.3 times higher than that of pure Zn0.95Mn0.05S and MZFO, respectively. Furthermore, the mechanism and pathways for the degradation of phenol are proposed. In addition, MZFO@Zn0.95Mn0.05S also exhibits a good reusability and high magnetic separation properties after 5 successive cycles. This new material has the advantages of low costs, simple reuse and great potential in application.


Subject(s)
Light , Phenol , Catalysis , Phenols , Zinc
7.
ACS Nano ; 15(12): 18880-18894, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34870416

ABSTRACT

The rapid development of consumer electronics, artificial intelligence, and clinical medicine generates an increasing demand for flexible pressure sensors, whose performance depends significantly on sensitive materials with high flexibility and proper conductivity. MXene, a type of 2D nanomaterial, has attracted extensive attention due to its good electrical conductivity, hydrophilicity, and flexibility. The synthesis methods for MXenes make it relatively easy to control their microstructure and surface termination groups. Hence, MXenes can obtain peculiar microstructures and facilely combine with other functional materials, making them promising prospects for use in flexible pressure sensors. In this Review, recent advances in MXenes are summarized, mainly focusing on the synthesis methods and their application in flexible pressure sensors. Finally, the challenges and potential solutions for future development are also discussed.


Subject(s)
Nanostructures , Titanium , Artificial Intelligence , Electric Conductivity , Electronics
8.
Phys Chem Chem Phys ; 22(37): 21124-21130, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32955059

ABSTRACT

In this study, the electronic structure and adsorption properties of O and OH for a series of Pt-Co alloys with different Pt/Co ratios (5 : 1, 2 : 1, 1 : 1, 1 : 2, and 1 : 5) were systematically studied using density functional theory calculations. Our computational results demonstrated that the introduced Co atoms have multiple effects on the surface electronic structure in different atomic layers of the alloy, leading to the discrepancies in the electronic structure between Pt-skin structures and non-Pt-skin structures. Moreover, the influence of the surface electronic structure on the adsorption of O and OH slightly differs. Indeed, the adsorption of O is more remarkably affected by the Pt/Co ratio than the OH adsorption and better follows the d-band center theory. Due to the difference of the alloy structure and the effect of different layer Co atoms, the adsorption of O and OH on the alloy configurations with the same Pt/Co ratio has different outcomes. Our results suggested that the oxygen reduction reaction (ORR) activity is related not only to the Pt/Co ratio of alloy surfaces but also to the specific surface structure. Our research can provide theoretical insights into the development of ORR catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...