Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 11(35): 32144-32150, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31416305

ABSTRACT

The unique properties of topological insulators such as Bi2Se3 are intriguing for their potential implementation in novel device architectures for low power and defect-tolerant logic and memory devices. Recent improvements in the synthesis of Bi2Se3 have positioned researchers to fabricate new devices to probe the limits of these materials. The fabrication of such devices, of course, requires etching of the topological insulator, in addition to other materials including gate oxides and contacts which may impact the topologically protected surface states. In this paper, we study the impact of He+ sputtering and inductively coupled plasma Cl2 and SF6 reactive etch chemistries on the physical, chemical, and electronic properties of Bi2Se3. Chemical analysis by X-ray photoelectron spectroscopy tracks changes in the surface chemistry and Fermi level, showing preferential removal of Se that results in vacancy-induced n-type doping. Chlorine-based chemistry successfully etches Bi2Se3 but with residual Se-Se bonding and interstitial Cl species remaining after the etch. The Se vacancies and residuals can be removed with postetch anneals in a Se environment, repairing Bi2Se3 nearly to the as-grown condition. Critically, in each of these cases, angle-resolved photoemission spectroscopy (ARPES) reveals that the topologically protected surface states remain even after inducing significant surface disorder and chemical changes, demonstrating that topological insulators are quite promising for defect-tolerant electronics. Changes to the ARPES intensity and momentum broadening of the surface states are discussed. Fluorine-based etching aggressively reacts with the film resulting in a relatively thick insulating film of thermodynamically favored BiF3 on the surface, prohibiting the use of SF6-based etching in Bi2Se3 processing.

2.
ACS Appl Mater Interfaces ; 9(44): 38977-38983, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29035026

ABSTRACT

MoS2, as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS2 junction is critical to realizing the potential of MoS2-based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 µm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS2 is detected by XPS characterization, which gives insight into metal contact physics to MoS2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

3.
Nano Lett ; 16(9): 5437-43, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27494551

ABSTRACT

Controllable doping of two-dimensional materials is highly desired for ideal device performance in both hetero- and p-n homojunctions. Herein, we propose an effective strategy for doping of MoS2 with nitrogen through a remote N2 plasma surface treatment. By monitoring the surface chemistry of MoS2 upon N2 plasma exposure using in situ X-ray photoelectron spectroscopy, we identified the presence of covalently bonded nitrogen in MoS2, where substitution of the chalcogen sulfur by nitrogen is determined as the doping mechanism. Furthermore, the electrical characterization demonstrates that p-type doping of MoS2 is achieved by nitrogen doping, which is in agreement with theoretical predictions. Notably, we found that the presence of nitrogen can induce compressive strain in the MoS2 structure, which represents the first evidence of strain induced by substitutional doping in a transition metal dichalcogenide material. Finally, our first principle calculations support the experimental demonstration of such strain, and a correlation between nitrogen doping concentration and compressive strain in MoS2 is elucidated.

4.
Nat Mater ; 15(11): 1166-1171, 2016 11.
Article in English | MEDLINE | ID: mdl-27571451

ABSTRACT

The spectrum of two-dimensional (2D) and layered materials 'beyond graphene' offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (∼5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides 'beyond hBN' and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

5.
ACS Appl Mater Interfaces ; 8(29): 19119-26, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27386734

ABSTRACT

Exfoliated molybdenum disulfide (MoS2) is shown to chemically oxidize in a layered manner upon exposure to a remote O2 plasma. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and atomic force microscopy (AFM) are employed to characterize the surface chemistry, structure, and topography of the oxidation process and indicate that the oxidation mainly occurs on the topmost layer without altering the chemical composition of underlying layer. The formation of S-O bonds upon short, remote plasma exposure pins the surface Fermi level to the conduction band edge, while the MoOx formation at high temperature modulates the Fermi level toward the valence band through band alignment. A uniform coverage of monolayer amorphous MoO3 is obtained after 5 min or longer remote O2 plasma exposure at 200 °C, and the MoO3 can be completely removed by annealing at 500 °C, leaving a clean ordered MoS2 lattice structure as verified by XPS, LEED, AFM, and scanning tunneling microscopy. This work shows that a remote O2 plasma can be useful for both surface functionalization and a controlled thinning method for MoS2 device fabrication processes.

6.
ACS Appl Mater Interfaces ; 7(23): 13038-43, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26016806

ABSTRACT

In situ "half cycle" atomic layer deposition (ALD) of Al2O3 was carried out on black phosphorus ("black-P") surfaces with modified phosphorus oxide concentrations. X-ray photoelectron spectroscopy is employed to investigate the interfacial chemistry and the nucleation of the Al2O3 on black-P surfaces. This work suggests that exposing a sample that is initially free of phosphorus oxide to the ALD precursors does not result in detectable oxidation. However, when the phosphorus oxide is formed on the surface prior to deposition, the black-P can react with both the surface adventitious oxygen contamination and the H2O precursor at a deposition temperature of 200 °C. As a result, the concentration of the phosphorus oxide increases after both annealing and the atomic layer deposition process. The nucleation rate of Al2O3 on black-P is correlated with the amount of oxygen on samples prior to the deposition. The growth of Al2O3 follows a "substrate inhibited growth" behavior where an incubation period is required. Ex situ atomic force microscopy is also used to investigate the deposited Al2O3 morphologies on black-P where the Al2O3 tends to form islands on the exfoliated black-P samples. Therefore, surface functionalization may be needed to get a conformal coverage of Al2O3 on the phosphorus oxide free samples.

7.
ACS Appl Mater Interfaces ; 6(15): 11834-8, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25025335

ABSTRACT

We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we observe when using TMA/H2O as precursors. Our Raman and X-ray photoelectron spectroscopy measurements indicate minimal variations in the MoS2 structure after ozone treatment at 200 °C, suggesting its excellent chemical resistance to ozone.

8.
ACS Appl Mater Interfaces ; 6(10): 7340-5, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24750024

ABSTRACT

The interfacial chemistry of thin (1 nm) silicon (Si) interfacial passivation layers (IPLs) deposited on acid-etched and native oxide InP(100) samples prior to atomic layer deposition (ALD) is investigated. The phosphorus oxides are scavenged completely from the acid-etched samples but not completely from the native oxide samples. Aluminum silicate and hafnium silicate are possibly generated upon ALD and following annealing. The thermal stability of a high-k/Si/InP (acid-etched) stack are also studied by in situ annealing to 400 and 500 °C under ultrahigh vacuum, and the aluminum oxide/Si/InP stack is the most thermally stable. An indium out-diffusion to the sample surface is observed through the Si IPL and the high-k dielectric, which may form volatile species and evaporate from the sample surface.

9.
ACS Nano ; 8(1): 642-9, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24261695

ABSTRACT

The contact resistance of metal-graphene junctions has been actively explored and exhibited inconsistencies in reported values. The interpretation of these electrical data has been based exclusively on a side-contact model, that is, metal slabs sitting on a pristine graphene sheet. Using in situ X-ray photoelectron spectroscopy to study the wetting of metals on as-synthesized graphene on copper foil, we show that side-contact is sometimes a misleading picture. For instance, metals like Pd and Ti readily react with graphitic carbons, resulting in Pd- and Ti-carbides. Carbide formation is associated with C-C bond breaking in graphene, leading to an end-contact geometry between the metals and the periphery of the remaining graphene patches. This work validates the spontaneous formation of the metal-graphene end-contact during the metal deposition process as a result of the metal-graphene reaction instead of a simple carbon diffusion process.

10.
Zhongguo Zhong Yao Za Zhi ; 38(23): 4052-5, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24791487

ABSTRACT

The total RNA was extracted from ginseng leaves of Panax ginseng. The Cu/Zn-SOD gene was amplified via RT-PCR and the pET-28(a)-Cu/Zn-SOD expression vector was constructed. The pET-28 (a)-Cu/Zn-SOD recombinant plasmid was transformed into Escherichia coli BL21 (DE3) competent cells and was induced by IPTG in order to select optimal induction of expression conditions. The target protein was purified by the nickel ions (Ni ) affinity chromatography and the target protein enzyme activity was determinated by the xanthine oxidase method. The similarity of the Cu/Zn-SOD gene sequences and the Cu/Zn-SOD gene sequences of Korean ginseng in NCBI was 99. 00%. The target protein expression level was about 44.42%, and the molecular weight was 16.30 kDa after the pET-28(a)-Cu/Zn-SOD recombinants were induced by IPTG. The purified Cu/Zn-SOD protease activity reached 10,596.69 U x mg(-1). The P. ginseng pET-28(a)-Cu/Zn-SOD prokaryotic expression vector was built by the method of molecular biology, which provided the foundation for studying the Cu/Zn-SOD biology function.


Subject(s)
Escherichia coli/genetics , Genetic Engineering/methods , Genetic Vectors/genetics , Panax/enzymology , Panax/genetics , Superoxide Dismutase/genetics , Cloning, Molecular , Gene Expression , Sequence Analysis , Superoxide Dismutase/isolation & purification , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...