Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 469: 133978, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461667

ABSTRACT

The expansion of aquaculture produces increasing pollutant loads, necessitating the use of drainage systems to discharge wastewater into surface water. To assess the mass variations and transfer process of aquaculture wastewater, an entire aquaculture drainage investigation lasting for 48 h was conducted, focusing on the nutrients, heavy metals, dissolved organic matter (DOM), and physicochemical properties of drainage in a commercial shrimp farm. The findings revealed that early drainage produced more heavy metals, total nitrogen (TN), dissolved organic nitrogen (DON), and feed-like proteins from aquaculture floating feed and additives, whereas late drainage produced more PO43--P and total dissolved phosphorus (TP). A few pollutants, including DON, Cu, and feed-like proteins, were effectively removed, whereas the contents of TN, dissolved inorganic nitrogen, and Zn increased in the multi-level aquaculture drainage system. Limited dilution indicated that in-stream transfer was the main process shaping pollutant concentrations within the drainage system. In the lower ditches, NO3--N, heavy metals, and feed-like proteins exhibited evident in-stream attenuation, while TN and NH4+-N underwent significant in-stream enrichment processes, especially in ditch C, with the transfer coefficient values (vf) of -1.74E-5 and -2.04E-5. This indicates that traditional aquaculture drainage systems serve as nitrogen sinks, rather than efficient nutrient purge facilitators. Notably, DOM was identified as a more influential factor in shaping the in-stream transfer process in aquaculture drainage systems, with an interpretation rate 40.79% higher than that of the physiochemical properties. Consequently, it is necessary to eliminate the obstacles posed by DOM to pollutant absorption and net zero emissions in aquaculture drainage systems in the future. ENVIRONMENTAL IMPLICATIONS: Nutrients, heavy metals, and dissolved organic matter are hazardous pollutants originating from high-density aquaculture. As the sole conduit to natural waters, aquaculture drainage systems have pivotal functions in receiving and purifying wastewater, in which the in-stream transfer process is affected by ambient conditions. This field study investigated the spatial variations, stage distinctions, effects of physicochemical properties, and dissolved organic matter (DOM) features. This finding suggests that the aquaculture drainage system as a nitrogen sink and DOM source. While the DOM is the key factor in shaping the in-stream transfer process, and obstacles for pollutant elimination. This study helps in understanding the fate of aquaculture pollutants and reveals the drawbacks of traditional aquaculture drainage systems.


Subject(s)
Environmental Pollutants , Metals, Heavy , Dissolved Organic Matter , Wastewater , Agriculture , Aquaculture , Nitrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...