Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 414: 110620, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38382414

ABSTRACT

In China and Southeast Asia, pre-fermented coconut water is commonly used for the production of nata de coco, a jelly-like fermented food that consists of bacterial cellulose (BC). The inherent natural fermentation process of coconut water introduces uncontrollable variables, which can lead to unstable yields during BC production. This study involved the collection of spontaneously pre-fermented coconut water over a five-month production cycle. The aim was to evaluate the microbiota and metabolite profile, as well as determine its impact on BC synthesis by Komagataeibacter nataicola. Significant variations in the microbial community structure and metabolite profile of pre-fermented coconut water were observed across different production months, these variations had significant effects on BC synthesis by K. nataicola. A total of 52 different bacterial genera and 32 different fungal genera were identified as potential biotic factors that can influence BC production. Additionally, several abiotic factors, including lactate (VIP = 4.92), mannitol (VIP = 4.22), ethanol (VIP = 2.67), and ascorbate (VIP = 1.61), were found to be potential driving forces affecting BC synthesis by K. nataicola. Upon further analysis, the correlation network indicated that 14 biotic factors had a significant contribution to BC production in three strains of K. nataicola. These factors included 8 bacterial genera, such as Limosilactobacillus and Lactiplantibacillus, and 6 fungal genera, such as Meyerozyma and Ogataea. The abiotic factors lactate, mannitol, and ethanol showed a positive correlation with the BC yield. This study provides significant insights into controlling the fermentation processes of pre-fermented coconut water in industrial settings.


Subject(s)
Acetobacteraceae , Cellulose , Cocos , Fermentation , Cellulose/chemistry , Ethanol , Lactates , Mannitol
2.
J Fish Dis ; 44(1): 33-44, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32959408

ABSTRACT

Grass carp reovirus (GCRV) causes devastating viral haemorrhagic disease in farmed grass carp (Ctenopharyngon idellus). As novel molecular probes, aptamers have been widely applied in rapid diagnosis and efficient therapies against virus or diseases. In this study, three single-stranded DNA (ssDNA) aptamers were selected against GCRV-infected CIK cells via SELEX (systematic evolution of ligands by exponential enrichment technology). Secondary structures predicted by MFOLD indicated that aptamers formed stem-loop structures, and GVI-11 had the lowest ΔG value of -30.84 KJ/mol. Three aptamers could specifically recognize GCRV-infected CIK cells, with calculated dissociation constants (Kd) of 220.86, 176.63 and 278.66 nM for aptamers GVI-1, GVI-7 and GVI-11, respectively, which indicated that they could serve as specific delivery system for antiviral therapies. The targets of aptamers GVI-1, GVI-7 and GVI-11 on the surface of GCRV-infected cells could be membrane proteins, which were trypsin-sensitive. Furthermore, FAM-labelled aptamer GVI-7 could be applied to detect GCRV infection in vivo. It is the first time to generate and characterize aptamers against GCRV-infected cells. These aptamers have great potentials in development of rapid diagnosis technology and antiviral agents against GCRV infection in aquaculture.


Subject(s)
Aptamers, Nucleotide , Carps/virology , Fish Diseases/diagnosis , Reoviridae Infections/veterinary , Animals , Cells, Cultured , Fish Diseases/virology , Molecular Probes , Nucleic Acid Conformation , Reoviridae Infections/diagnosis , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...