Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(5): 3223-3233, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35041787

ABSTRACT

The diverse synthesis of oxatricyclotridecanes and oxatricyclododecanes, which are the core structures of toxicodenane A and its skeletal analogues, via a unified manner is presented. The stereochemistry at the bridgehead position of the oxa-bridged bicycle could be efficiently controlled through a diastereoselective anti- and syn-Grignard allylation reaction by appropriately tuning the reaction conditions such as the solvent, the counterion of the Grignard reagent, the substrate, or a combination of these. The ring size could be precisely elaborated via a Lewis acid-mediated intramolecular transacetalation and Prins cyclization cascade reaction by varying the steric hindrance of olefin moiety. Namely, substrates bearing a terminally unsubstituted olefinic functionality afforded oxatricyclotridecanes with an overwhelming preference, while those bearing a dimethyl-substituted olefinic group produced exclusively oxatricyclododecanes. The wide utility and generality of the above key transformations are highlighted by the applications in the unified synthesis of (±)-toxicodenance A, (+)-toxicodenane A, (+)-8,11-epi-toxicodenane A, and other oxatricyclic cores with different stereochemistries and ring sizes.


Subject(s)
Alkenes , Lewis Acids , Cyclization , Indicators and Reagents , Sesquiterpenes , Stereoisomerism
2.
Org Lett ; 23(21): 8570-8574, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34652928

ABSTRACT

We present the first enantioselective total synthesis and absolute configuration assignment of (+)-toxicodenane A via a nine-step sequence from the readily available material. The synthesis features a desymmetric enantioselective reduction of 2,2-disubstituted 1,3-cyclohexanedione for the synthesis of a chiral 2,2-disubstituted 3-hydroxy cyclohexanone building block, a highly diastereoselective Grignard reaction for the incorporation of an allyl group, and a Lewis acid-mediated intramolecular transacetalation and Prins cascade reaction for the construction of oxa-bridged bicyclic rings.

3.
J Am Chem Soc ; 143(7): 2994-3002, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33565311

ABSTRACT

The P-stereogenic phosphinamides are a structurally novel skeletal class which has not been investigated as chiral organocatalysts. However, chiral cyclic 3-hydroxy ketones are widely used as building blocks in the synthesis of natural products and bioactive compounds. However, general and practical methods for the synthesis of such chiral compounds remain underdeveloped. Herein, we demonstrate that the P-stereogenic phosphinamides are powerful organocatalysts for the desymmetric enantioselective reduction of cyclic 1,3-diketones, providing a useful method for the synthesis of chiral cyclic 3-hydroxy ketones. The protocol displays a broad substrate scope that is amenable to a series of cyclic 2,2-disubstituted five- and six-membered 1,3-diketones. The chiral cyclic 3-hydroxy ketone products bearing an all-carbon chiral quaternary center could be obtained with high enantioselectivities (up to 98% ee) and diastereoselectivities (up to 99:1 dr). Most importantly, the reactions could be practically performed on the gram scale and the catalysts could be reused without compromising the catalytic efficiency. Mechanistic studies revealed that an intermediate formed from P-stereogenic phosphinamide and catecholborane is the real catalytically active species. The results disclosed herein bode well for designing and developing other reactions using P-stereogenic phosphinamides as new organocatalysts.

4.
Chem Commun (Camb) ; 53(43): 5826-5829, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28497148

ABSTRACT

We present a highly efficient method for the synthesis of cyclic P-stereogenic phosphinamides via the Ce(IV)-promoted radical oxidative aryl C-H phosphinamidation of acyclic P-stereogenic phosphinamides. The new protocol provides a useful platform for the versatile synthesis of various potentially useful P-stereogenic compounds.

5.
Int J Mol Sci ; 9(6): 951-961, 2008 Jun.
Article in English | MEDLINE | ID: mdl-19325839

ABSTRACT

The most potent catechin in green tea is (-)-epigallocatechin-3-gallate [(-)-EGCG], which, however, is unstable under physiological conditions. To discover more stable and more potent polyphenol proteasome inhibitors, we synthesized several novel fluoro-substituted (-)-EGCG analogs, named F-EGCG analogs, as well as their prodrug forms with all of -OH groups protected by acetate. We report that the prodrug form of one F-EGCG analog exhibited greater potency than the previously reported peracetate of (-)-EGCG to inhibit proteasomal activity, suppress cell proliferation, and induce apoptosis in human leukemia Jurkat T cells, demonstrating the potential of these compounds to be developed into novel anti-cancer and cancer-preventive agents.

SELECTION OF CITATIONS
SEARCH DETAIL
...