Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Cell Death Discov ; 10(1): 229, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740765

ABSTRACT

Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1ß and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1ß-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.

2.
Viruses ; 16(4)2024 04 15.
Article in English | MEDLINE | ID: mdl-38675952

ABSTRACT

This study investigates the roles of T, B, and Natural Killer (NK) cells in the pathogenesis of severe COVID-19, utilizing mouse-adapted SARS-CoV-2-MA30 (MA30). To evaluate this MA30 mouse model, we characterized MA30-infected C57BL/6 mice (B6) and compared them with SARS-CoV-2-WA1 (an original SARS-CoV-2 strain) infected K18-human ACE2 (K18-hACE2) mice. We found that the infected B6 mice developed severe peribronchial inflammation and rapid severe pulmonary edema, but less lung interstitial inflammation than the infected K18-hACE2 mice. These pathological findings recapitulate some pathological changes seen in severe COVID-19 patients. Using this MA30-infected mouse model, we further demonstrate that T and/or B cells are essential in mounting an effective immune response against SARS-CoV-2. This was evident as Rag2-/- showed heightened vulnerability to infection and inhibited viral clearance. Conversely, the depletion of NK cells did not significantly alter the disease course in Rag2-/- mice, underscoring the minimal role of NK cells in the acute phase of MA30-induced disease. Together, our results indicate that T and/or B cells, but not NK cells, mitigate MA30-induced disease in mice and the infected mouse model can be used for dissecting the pathogenesis and immunology of severe COVID-19.


Subject(s)
COVID-19 , DNA-Binding Proteins , Disease Models, Animal , Killer Cells, Natural , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Killer Cells, Natural/immunology , COVID-19/immunology , COVID-19/virology , Mice , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , DNA-Binding Proteins/genetics , DNA-Binding Proteins/deficiency , Mice, Knockout , Humans , Lung/pathology , Lung/virology , Lung/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , B-Lymphocytes/immunology , Female , T-Lymphocytes/immunology
3.
Cell Mol Life Sci ; 81(1): 94, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38368584

ABSTRACT

The complement system, a key component of innate immunity, provides the first line of defense against bacterial infection; however, the COVID-19 pandemic has revealed that it may also engender severe complications in the context of viral respiratory disease. Here, we review the mechanisms of complement activation and regulation and explore their roles in both protecting against infection and exacerbating disease. We discuss emerging evidence related to complement-targeted therapeutics in COVID-19 and compare the role of the complement in other respiratory viral diseases like influenza and respiratory syncytial virus. We review recent mechanistic studies and animal models that can be used for further investigation. Novel knockout studies are proposed to better understand the nuances of the activation of the complement system in respiratory viral diseases.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus, Human , Animals , Humans , Pandemics , Complement System Proteins
4.
Neuroscience ; 538: 22-29, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38072171

ABSTRACT

In the field of brain-to-text communication, it is difficult to finish highly dexterous behaviors of writing multi-character by motor-imagery-based brain-computer interface (MI-BCI), setting a barrier to restore communication in people who have lost the ability to move and speak. In this paper, we design and implement a multi-character classification scheme based on 29 characters of motor imagery (MI) electroencephalogram (EEG) signals, which contains 26 English letters and 3 punctuation marks. Firstly, we design a novel experimental paradigm to increase the variety of BCI inputs by asking subjects to imagine the movement of writing 29 characters instead of gross motor skills such as reaching or grasping. Secondly, because of the high dimension of EEG signals, we adopt power spectral density (PSD), principal components analysis (PCA), kernel principal components analysis (KPCA) respectively to decompose EEG signals and extract feature, and then test the results with pearson product-moment correlation coefficient (PCCs). Thirdly, we respectively employ k-nearest neighbor (kNN), support vector machine (SVM), extreme learning machine (ELM) and light gradient boosting machine (LightGBM) to classify 29 characters and compare the results. We have implemented a complete scheme, including paradigm design, signal acquisition, feature extraction and classification, which can effectively classify 29 characters. The experimental results show that the KPCA has the best feature extraction effect and the kNN has the highest classification accuracy, with the final classification accuracy reaching 96.2%, which is better than other studies.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Electroencephalography/methods , Imagery, Psychotherapy , Movement , Brain , Algorithms , Imagination
5.
Commun Biol ; 6(1): 1265, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092883

ABSTRACT

SARS-CoV-2 infection can cause persistent respiratory sequelae. However, the underlying mechanisms remain unclear. Here we report that sub-lethally infected K18-human ACE2 mice show patchy pneumonia associated with histiocytic inflammation and collagen deposition at 21 and 45 days post infection (DPI). Transcriptomic analyses revealed that compared to influenza-infected mice, SARS-CoV-2-infected mice had reduced interferon-gamma/alpha responses at 4 DPI and failed to induce keratin 5 (Krt5) at 6 DPI in lung, a marker of nascent pulmonary progenitor cells. Histologically, influenza- but not SARS-CoV-2-infected mice showed extensive Krt5+ "pods" structure co-stained with stem cell markers Trp63/NGFR proliferated in the pulmonary consolidation area at both 7 and 14 DPI, with regression at 21 DPI. These Krt5+ "pods" structures were not observed in the lungs of SARS-CoV-2-infected humans or nonhuman primates. These results suggest that SARS-CoV-2 infection fails to induce nascent Krt5+ cell proliferation in consolidated regions, leading to incomplete repair of the injured lung.


Subject(s)
COVID-19 , Influenza, Human , Mice , Humans , Animals , SARS-CoV-2 , Lung , Gene Expression Profiling
6.
Am J Physiol Renal Physiol ; 325(6): F770-F778, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37823193

ABSTRACT

Kidney intercalated cells (ICs) maintain acid-base homeostasis and recent studies have demonstrated that they function in the kidney's innate defense. To study kidney innate immune function, ICs have been enriched using vacuolar ATPase (V-ATPase) B1 subunit (Atp6v1b1)-Cre (B1-Cre) mice. Although Atp6v1b1 is considered kidney specific, it is expressed in multiple organ systems, both in mice and humans, raising the possibility of off-target effects when using the Cre-lox system. We have recently shown using single-cell RNA sequencing that the gene that codes for the V-ATPase G3 subunit (mouse gene: Atp6v1g3; human gene: ATP6V1G3; protein abbreviation: G3) mRNA is selectively enriched in human kidney ICs. In this study, we generated Atp6v1g3-Cre (G3-Cre) reporter mice using CRISPR/CAS technology and crossed them with Tdtomatoflox/flox mice. The resultant G3-Cre+Tdt+ progeny was evaluated for kidney specificity in multiple tissues and found to be highly specific to kidney cells with minimal or no expression in other organs evaluated compared with B1-Cre mice. Tdt+ cells were flow sorted and were enriched for IC marker genes on RT-PCR analysis. Next, we crossed these mice to ihCD59 mice to generate an IC depletion mouse model (G3-Cre+ihCD59+/+). ICs were depleted in these mice using intermedilysin, which resulted in lower blood pH, suggestive of a distal renal tubular acidosis phenotype. The G3-Cre mice were healthy, bred normally, and produce regular-sized litter. Thus, this new "IC reporter" mice can be a useful tool to study ICs.NEW & NOTEWORTHY This study details the development, validation, and experimental use of a new mouse model to study the collecting duct and intercalated cells. Kidney intercalated cells are a cell type increasingly recognized to be important in several human diseases including kidney infections, acid-base disorders, and acute kidney injury.


Subject(s)
Acidosis, Renal Tubular , Kidney Tubules, Collecting , Vacuolar Proton-Translocating ATPases , Mice , Humans , Animals , Kidney/metabolism , Integrases/genetics , Integrases/metabolism , Acidosis, Renal Tubular/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Kidney Tubules, Collecting/metabolism
7.
mSphere ; 8(5): e0037523, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37737611

ABSTRACT

Single-cell RNA-seq has been used to characterize human COVID-19. To determine if preclinical models successfully mimic the cell-intrinsic and -extrinsic effects of severe disease, we conducted a meta-analysis of single-cell data across five model species. To assess whether dissemination of viral RNA in lung cells tracks pathology and results in cell-intrinsic and -extrinsic transcriptomic changes in COVID-19. We conducted a meta-analysis by analyzing six publicly available, scRNA-seq data sets. We used dual mapping (host and virus) and differential gene expression analyses to compare viral+ and viral- cell populations. We conducted a principal component analysis to identify successful models of human COVID-19. We found expression of viral RNA in many non-epithelial cell types. Fibroblasts, macrophages, and endothelial cells exhibit clear evidence of viral-intrinsic and -extrinsic effects on host gene expression. Using viral RNA expression, we found that K18-hACE2 mice most closely modeled severe human COVID-19, followed by hamsters. Ferrets and macaques are poor models of human disease due to the low presence of viral RNA. Moreover, we found that increased transcripts of certain key inflammatory genes such as IL1B, IL18, and CXCL10 are not restricted to virally infected cells, suggesting these genes are regulated in a paracrine or autocrine fashion. These data affirm widespread dissemination of viral RNA in the lung, which may be key in the pathogenesis of severe COVID-19 and demonstrate ferrets and Rhesus macaques are poor models of human COVID-19. IMPORTANCE We conducted a high-resolution meta-analysis of scRNA-seq data from humans and five animal models of COVID-19. This study reports viral RNA dissemination in several cell types in human data as well as in some of the pre-clinical models. Using this metric, the K18-hACE2 mouse model, followed by the hamster model, most closely resembled human COVID-19. We observed clear evidence of viral-intrinsic effects within cells (e.g., IRF5 expression) as well as viral-extrinsic cytokine modulation (e.g., IL1B, IL18, CXCL10). We observed proinflammatory chemokine expression in cells devoid of viral RNA expression, suggesting autocrine/paracrine interferon regulation. This report serves as a resource-synthesizing data from COVID-19 humans and animal models and suggesting improvements for relevant pre-clinical models that may aid future diagnostic and therapeutic development projects.


Subject(s)
COVID-19 , RNA, Viral , Cricetinae , Humans , Animals , Mice , RNA, Viral/genetics , SARS-CoV-2/genetics , Endothelial Cells , Ferrets , Interleukin-18 , Macaca mulatta
8.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629052

ABSTRACT

Within arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis. Caspase-1-deficient (Casp-1-/-) mice were crossed with HIV-1 transgenic (Tg26+/-) mice with an atherogenic ApoE-deficient (ApoE-/-) background to create global caspase-1-deficient mice (Tg26+/-/ApoE-/-/Casp-1-/-). Caspase-1-sufficient (Tg26+/-/ApoE-/-/Casp-1+/+) mice served as the controls. Next, we created chimeric hematopoietic cell-deficient mice by reconstituting irradiated ApoE-/- mice with bone marrow cells transplanted from Tg26+/-/ApoE-/-/Casp-1-/- (BMT Casp-1-/-) or Tg26+/-/ApoE-/-/Casp-1+/+ (BMT Casp-1+/+) mice. Global caspase-1 knockout in mice suppressed plaque deposition in the thoracic aorta, serum IL-18 levels, and ex vivo foam cell formation. The deficiency of caspase-1 in hematopoietic cells resulted in reduced atherosclerotic plaque burden in the whole aorta and aortic root, which was associated with reduced macrophage infiltration. Transcriptomic analyses of peripheral mononuclear cells and splenocytes indicated that caspase-1 deficiency inhibited caspase-1 pathway-related genes. These results document the critical atherogenic role of caspase-1 in chronic HIV infection and highlight the implication of this pathway and peripheral immune activation in HIV-associated atherosclerosis.


Subject(s)
Atherosclerosis , HIV Infections , HIV-1 , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Atherosclerosis/genetics , Caspase 1/genetics , HIV Infections/complications , HIV Infections/genetics , Plaque, Atherosclerotic/genetics
9.
Front Immunol ; 14: 1158455, 2023.
Article in English | MEDLINE | ID: mdl-37457744

ABSTRACT

Introduction: Severe COVID-19 results initially in pulmonary infection and inflammation. Symptoms can persist beyond the period of acute infection, and patients with Post-Acute Sequelae of COVID (PASC) often exhibit a variety of symptoms weeks or months following acute phase resolution including continued pulmonary dysfunction, fatigue, and neurocognitive abnormalities. We hypothesized that dysregulated NAD metabolism contributes to these abnormalities. Methods: RNAsequencing of lungs from transgenic mice expressing human ACE2 (K18-hACE2) challenged with SARS-CoV-2 revealed upregulation of NAD biosynthetic enzymes, including NAPRT1, NMNAT1, NAMPT, and IDO1 6 days post-infection. Results: Our data also demonstrate increased gene expression of NAD consuming enzymes: PARP 9,10,14 and CD38. At the same time, SIRT1, a protein deacetylase (requiring NAD as a cofactor and involved in control of inflammation) is downregulated. We confirmed our findings by mining sequencing data from lungs of patients that died from SARS-CoV-2 infection. Our validated findings demonstrating increased NAD turnover in SARS-CoV-2 infection suggested that modulating NAD pathways may alter disease progression and may offer therapeutic benefits. Specifically, we hypothesized that treating K18-hACE2 mice with nicotinamide riboside (NR), a potent NAD precursor, may mitigate lethality and improve recovery from SARS-CoV-2 infection. We also tested the therapeutic potential of an anti- monomeric NAMPT antibody using the same infection model. Treatment with high dose anti-NAMPT antibody resulted in significantly decreased body weight compared to control, which was mitigated by combining HD anti-NAMPT antibody with NR. We observed a significant increase in lipid metabolites, including eicosadienoic acid, oleic acid, and palmitoyl carnitine in the low dose antibody + NR group. We also observed significantly increased nicotinamide related metabolites in NR treated animals. Discussion: Our data suggest that infection perturbs NAD pathways, identify novel mechanisms that may explain some pathophysiology of CoVID-19 and suggest novel strategies for both treatment and prevention.


Subject(s)
COVID-19 , Nicotinamide-Nucleotide Adenylyltransferase , Humans , Mice , Animals , NAD/metabolism , SARS-CoV-2/metabolism , Mice, Transgenic , Inflammation , Nicotinamide-Nucleotide Adenylyltransferase/metabolism
10.
Cogn Neurodyn ; 17(2): 373-384, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37007202

ABSTRACT

Brain-computer interface (BCI) can obtain text information by decoding language induced electroencephalogram (EEG) signals, so as to restore communication ability for patients with language impairment. At present, the BCI system based on speech imagery of Chinese characters has the problem of low accuracy of features classification. In this paper, the light gradient boosting machine (LightGBM) is adopted to recognize Chinese characters and solve the above problems. Firstly, the Db4 wavelet basis function is selected to decompose the EEG signals in six-layer of full frequency band, and the correlation features of Chinese characters speech imagery with high time resolution and high frequency resolution are extracted. Secondly, the two core algorithms of LightGBM, gradient-based one-side sampling and exclusive feature bundling, are used to classify the extracted features. Finally, we verify that classification performance of LightGBM is more accurate and applicable than the traditional classifiers according to the statistical analysis methods. We evaluate the proposed method through contrast experiment. The experimental results show that the average classification accuracy of the subjects' silent reading of Chinese characters "(left)", "(one)" and simultaneous silent reading is improved by 5.24%, 4.90% and 12.44% respectively.

11.
Comput Biol Med ; 157: 106792, 2023 05.
Article in English | MEDLINE | ID: mdl-36965325

ABSTRACT

Segmentation of anatomical structures in ultrasound images is a challenging task due to existence of artifacts inherit to the modality such as speckle noise, attenuation, shadowing, uneven textures and blurred boundaries. This paper presents a novel attention-based predict-refine network, called ACU2E-Net, for segmentation of soft-tissue structures in ultrasound images. The network consists of two modules: a predict module, which is built upon our newly proposed attentive coordinate convolution; and a novel multi-head residual refinement module, which consists of three parallel residual refinement modules. The attentive coordinate convolution is designed to improve the segmentation accuracy by perceiving the shape and positional information of the target anatomy. The proposed multi-head residual refinement module reduces both segmentation biases and variances by integrating residual refinement and ensemble strategies. Moreover, it avoids multi-pass training and inference commonly seen in ensemble methods. To show the effectiveness of our method, we collect a comprehensive dataset of thyroid ultrasound scans from 12 different imaging centers, and evaluate our proposed network against state-of-the-art segmentation methods. Comparisons against state-of-the-art models demonstrate the competitive performance of our newly designed network on both the transverse and sagittal thyroid images. Ablation studies show that proposed modules improve the segmentation Dice score of the baseline model from 79.62% to 80.97% and 82.92% while reducing the variance from 6.12% to 4.67% and 3.21% in transverse and sagittal views, respectively.


Subject(s)
Image Processing, Computer-Assisted , Artifacts , Health Facilities , Thyroid Gland/diagnostic imaging , Ultrasonography
12.
Exp Biol Med (Maywood) ; 248(2): 117-129, 2023 01.
Article in English | MEDLINE | ID: mdl-36426712

ABSTRACT

Immune-mediated hepatitis is marked by liver inflammation characterized by immune cell infiltration, chemokine/cytokine production, and hepatocyte injury. C-X3C motif receptor 1 (CX3CR1), as the receptor of chemokine C-X3C motif ligand 1 (CX3CL1)/fractalkine, is mainly expressed on immune cells including monocytes and T cells. Previous studies have shown that CX3CR1 protects against liver fibrosis, but the exact role of CX3CL1/CX3CR1 in acute immune-mediated hepatitis remains unknown. Here, we investigate the role of the CX3CL1/CX3CR1 axis in immune-mediated hepatitis using concanavalin A (ConA)-induced liver injury model in CX3CR1-deficient (Cx3cr1-/-) mice. We observed that Cx3cr1-/- mice had severe liver injury and increased pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin-1 beta [IL-1ß], and IL-6) in serum and liver compared to wild-type (Cx3cr1+/+) mice after ConA injection. The deficiency of CX3CR1 did not affect ConA-induced immune cell infiltration in liver but led to elevated production of TNF-α in macrophages as well as IFN-γ in T cells after ConA treatment. On the contrary, exogenous CX3CL1 attenuated ConA-induced cytokine production in wild type, but not CX3CR1-deficient macrophages and T cells. Furthermore, in vitro results showed that CX3CR1 deficiency promoted the pro-inflammatory cytokine expression by increasing the phosphorylation of nuclear factor kappa B (NF-κB) p65 (p-NF-κB p65). Finally, pre-treatment of p-NF-κB p65 inhibitor, resveratrol, attenuated ConA-induced liver injury and inflammatory responses, especially in Cx3cr1-/- mice. In conclusion, our data show that the deficiency of CX3CR1 promotes pro-inflammatory cytokine production in macrophages and T cells by enhancing the phosphorylation of NF-κB p65, which exacerbates liver injury in ConA-induced hepatitis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hepatitis , Mice , Animals , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , T-Lymphocytes/metabolism , Cytokines/metabolism , Hepatitis/pathology , Macrophages/metabolism , Interferon-gamma/metabolism , Mice, Inbred C57BL , CX3C Chemokine Receptor 1
14.
Transplantation ; 106(11): 2172-2181, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35706097

ABSTRACT

BACKGROUND: Aryl hydrocarbon receptor (AhR) plays important roles in modulating immune responses. However, the role of AhR in rat liver transplantation (LT) has not been explored. METHODS: Safety and side effects of N -(3,4-dimethoxycinnamonyl) anthranilic acid (3,4-DAA) and 2-methyl-2H-pyrazole-3-carboxylic acid amide (CH223191) were evaluated. We used optimal doses of 2 drugs, 3,4-DAA, a drug used for mediating AhR activation, and CH223191, antagonist of AhR (3,4-DAA, CH223191, and 3,4-DAA + CH223191), intraperitoneally administered to recipients daily to investigate the role of AhR in the rat LT model. The recipient livers were used to observe the pathological changes, the cells infiltrating the graft, and changes of AhR and programmed death-1 (PD-1) by Western blot, real-time polymerase chain reaction, and immunofluorescence assays. The contents of Foxp3 + and PD-1 + T cells in the recipient spleen and peripheral blood mononuclear cells were evaluated by flow cytometry. In vitro, after isolating CD4 + T cells, they were treated with different AhR ligands to observe the differentiation direction and PD-1 expression level. RESULTS: The activation of AhR by 3,4-DAA prolonged survival time and ameliorated graft rejection, which were associated with increased expression of AhR and PD-1 in the livers and increased Foxp3 + T cells and PD-1 + T cells in recipient spleens, livers, and peripheral blood mononuclear cells. In vitro, primary T cells incubated with 3,4-DAA mediated increased proportion of Treg and PD-1 + T cells. However, the suppression of AhR with CH223191 reverses these effects, both in the LT model and in vitro. CONCLUSIONS: Our results indicated that AhR activation might reduce the occurrence of rat acute rejection by increasing the proportion of Treg and the expression of PD-1.


Subject(s)
Liver Transplantation , Receptors, Aryl Hydrocarbon , Animals , Rats , Amides/metabolism , Amides/pharmacology , Cell Proliferation , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Leukocytes, Mononuclear/metabolism , Programmed Cell Death 1 Receptor/genetics , Pyrazoles , Receptors, Aryl Hydrocarbon/genetics , T-Lymphocytes, Regulatory
15.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: mdl-35632708

ABSTRACT

SARS-CoV-2 variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) variants, have displayed increased transmissibility and, therefore, have been categorized as variants of concern (VOCs). The pervasiveness of VOCs suggests a high probability of future mutations that may lead to increased virulence. Prior reports have shown that VOC infection without expression of human angiotensin converting enzyme-2 receptor (hACE2) in mice is possible. We sought to understand if the increased transmissibility of VOCs can infect C57BL/6 mice without expression of hACE2 receptor required for entry of SARS-CoV-2 normally. We examined the ability of infection with Beta and Gamma variants to infect and cause both pathological and clinical changes consistent with severe COVID-19, including body weight changes, survival, subgenomic viral titer, lung histology on Hematoxylin and Eosin (H&E) staining, and viral protein expression as measured by immunohistochemistry staining of viral antigen (IHC). These methods were used to examine three groups of mice: C57BL6, Rag2-/-, and Ccr2-/- mice. We observed that these mice, infected with Beta and Gamma variants of SARS-CoV-2, did not show pathological changes as indicated by weight loss, altered survival, or significant lung pathology on H&E staining. Subgenomic qPCR and IHC staining for viral protein indicated that there was some evidence of infection but far below ACE2 transgenic mice, which showed clinical disease and pathologic changes consistent with ARDS. These data suggest that these variants replicate poorly even in the setting of profound immune deficiency.


Subject(s)
COVID-19 , Disease Models, Animal , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/virology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , SARS-CoV-2/genetics , Viral Proteins
16.
mSystems ; 7(3): e0005822, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35582921

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has become a severe global public health crisis. Therefore, understanding the molecular details of SARS-CoV-2 will be critical for fighting the virus's spread and preventing future pandemics. In this study, we globally profiled the stability of SARS-CoV-2-encoded proteins, studied their degradation pathways, and determined their correlation with the antibody responses in patient plasma. We identified 18 proteins with unstable half-lives and 6 relatively stable proteins with longer half-lives. The labile SARS-CoV-2 proteins were degraded mainly by the ubiquitin-proteasome pathway. We also observed a significant correlation between antibody levels and protein half-lives, which indicated that a stable antigen of SARS-CoV-2 could be more effective for eliciting antibody responses. In addition, levels of antiviral antibodies targeting NSP10 were found to be negatively correlated with systemic levels of interleukin 6 (IL-6) in patients. These findings may facilitate the development of novel therapeutic or diagnostic approaches. IMPORTANCE SARS-CoV-2, the etiological cause of COVID-19, carries 29 genes in its genome. However, our knowledge of the viral proteins in biological and biochemical aspects is limited. In this study, we globally profiled the stability of the viral proteins in living lung epithelial cells. Importantly, the labile SARS-CoV-2-encoded proteins were mainly degraded through the ubiquitin-proteasome pathway. Stable proteins, including spike and nucleocapsid, of SARS-CoV-2 were more effective in eliciting antibody production. The levels of antiviral antibodies targeting NSP10 were negatively correlated with systemic levels of IL-6 in COVID-19 patients.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Antiviral Agents/chemistry , Interleukin-6 , Proteasome Endopeptidase Complex/genetics , SARS-CoV-2/genetics , Ubiquitins , Viral Proteins
17.
iScience ; 25(1): 103670, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34957381

ABSTRACT

SARS-CoV-2, the etiologic agent of COVID-19, uses ACE2 as a cell entry receptor. Soluble ACE2 has been shown to have neutralizing antiviral activity but has a short half-life and no active transport mechanism from the circulation into the alveolar spaces of the lung. To overcome this, we constructed an ACE2-human IgG1 fusion protein with mutations in the catalytic domain of ACE2. A mutation in the catalytic domain of ACE2, MDR504, significantly increased binding to SARS-CoV-2 spike protein, as well as to a spike variant, in vitro with more potent viral neutralization in plaque assays. Parental administration of the protein showed stable serum concentrations with excellent bioavailability in the epithelial lining fluid of the lung, and ameliorated lung SARS-CoV-2 infection in vivo. These data support that the MDR504 hACE2-Fc is an excellent candidate for treatment or prophylaxis of COVID-19 and potentially emerging variants.

18.
Viruses ; 15(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36680154

ABSTRACT

Increasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology. Herein we show neuroinflammatory profiles of immunologically intact mice, C57BL/6J and BALB/c, as well as immunodeficient (Rag2-/-) mice, to a mouse-adapted strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 (MA10)). Our findings indicate that brain IL-6 levels are significantly higher in BALB/c male mice infected with SARS-CoV-2 MA10. Additionally, blood-brain barrier integrity, as measured by the vascular tight junction protein claudin-5, was reduced by SARS-CoV-2 MA10 infection in all three strains. Brain glial fibrillary acidic protein (GFAP) mRNA was also elevated in male C57BL/6J infected mice compared with the mock group. Lastly, immune-vascular effects of SARS-CoV-2 (MA10), as measured by H&E scores, demonstrate an increase in perivascular lymphocyte cuffing (PLC) at 30 days post-infection among infected female BALB/c mice with a significant increase in PLC over time only in SARS-CoV-2 MA10) infected mice. Our study is the first to demonstrate that SARS-CoV-2 (MA10) infection induces neuroinflammation in laboratory mice and could be used as a novel model to study SARS-CoV-2-mediated cerebrovascular pathology.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Male , Female , Animals , COVID-19/pathology , Lung , Neuroinflammatory Diseases , Mice, Inbred C57BL , Disease Models, Animal , Mice, Transgenic
19.
Front Cardiovasc Med ; 8: 773473, 2021.
Article in English | MEDLINE | ID: mdl-34912867

ABSTRACT

To determine whether pro-inflammatory lipid lysophosphatidylinositols (LPIs) upregulate the expressions of membrane proteins for adhesion/signaling and secretory proteins in human aortic endothelial cell (HAEC) activation, we developed an EC biology knowledge-based transcriptomic formula to profile RNA-Seq data panoramically. We made the following primary findings: first, G protein-coupled receptor 55 (GPR55), the LPI receptor, is expressed in the endothelium of both human and mouse aortas, and is significantly upregulated in hyperlipidemia; second, LPIs upregulate 43 clusters of differentiation (CD) in HAECs, promoting EC activation, innate immune trans-differentiation, and immune/inflammatory responses; 72.1% of LPI-upregulated CDs are not induced in influenza virus-, MERS-CoV virus- and herpes virus-infected human endothelial cells, which hinted the specificity of LPIs in HAEC activation; third, LPIs upregulate six types of 640 secretomic genes (SGs), namely, 216 canonical SGs, 60 caspase-1-gasdermin D (GSDMD) SGs, 117 caspase-4/11-GSDMD SGs, 40 exosome SGs, 179 Human Protein Atlas (HPA)-cytokines, and 28 HPA-chemokines, which make HAECs a large secretory organ for inflammation/immune responses and other functions; fourth, LPIs activate transcriptomic remodeling by upregulating 172 transcription factors (TFs), namely, pro-inflammatory factors NR4A3, FOS, KLF3, and HIF1A; fifth, LPIs upregulate 152 nuclear DNA-encoded mitochondrial (mitoCarta) genes, which alter mitochondrial mechanisms and functions, such as mitochondrial organization, respiration, translation, and transport; sixth, LPIs activate reactive oxygen species (ROS) mechanism by upregulating 18 ROS regulators; finally, utilizing the Cytoscape software, we found that three mechanisms, namely, LPI-upregulated TFs, mitoCarta genes, and ROS regulators, are integrated to promote HAEC activation. Our results provide novel insights into aortic EC activation, formulate an EC biology knowledge-based transcriptomic profile strategy, and identify new targets for the development of therapeutics for cardiovascular diseases, inflammatory conditions, immune diseases, organ transplantation, aging, and cancers.

20.
Front Cardiovasc Med ; 8: 731315, 2021.
Article in English | MEDLINE | ID: mdl-34651027

ABSTRACT

Rationale: Previous studies have indicated an important role for complement in atherosclerosis, a lipid-driven chronic inflammatory disease associated to oxidative stress in the vessel wall. However, it remains unclear how complement is activated in the process of atherogenesis. An accepted general model for complement activation in the context of ischemia reperfusion injury is that ischemia induces the exposure of neoepitopes that are recognized by natural self-reactive IgM antibodies, and that in turn activate complement. Objective: We investigated whether a similar phenomenon may be involved in the pathogenesis of atherosclerosis, and whether interfering with this activation event, together with inhibition of subsequent amplification of the cascade at the C3 activation step, can provide protection against atherogenesis. Methods and Results: We utilized C2scFv-Crry, a novel construct consisting of a single chain antibody (scFv) linked to Crry, a complement inhibitor that functions at C3 activation. The scFv moiety was derived from C2 IgM mAb that specifically recognizes phospholipid neoepitopes known to be expressed after ischemia. C2scFv-Crry targeted to the atherosclerotic plaque of Apoe -/- mice, demonstrating expression of the C2 neoepitope. C2scFv-Crry administered twice per week significantly attenuated atherosclerotic plaque in the aorta and aortic root of Apoe -/- mice fed with a high-fat diet (HFD) for either 2 or 4 months, and treatment reduced C3 deposition and membrane attack complex formation as compared to vehicle treated mice. C2scFv-Crry also inhibited the uptake of oxidized low-density-lipoprotein (oxLDL) by peritoneal macrophages, which has been shown to play a role in pathogenesis, and C2scFv-Crry-treated mice had decreased lipid content in the lesion with reduced oxLDL levels in serum compared to vehicle-treated mice. Furthermore, C2scFv-Crry reduced the deposition of endogenous total IgM in the plaque, although it did not alter serum IgM levels, further indicating a role for natural IgM in initiating complement activation. Conclusion: Neoepitope targeted complement inhibitors represent a novel therapeutic approach for atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...