Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1338408, 2024.
Article in English | MEDLINE | ID: mdl-38440327

ABSTRACT

For individuals with celiac disease (CD), the current clinical therapy option available is a lifelong gluten-free diet. Therefore, it is essential to swiftly and efficiently detect gluten in foods. A colorimetric sensor has been developed, which operates by regulating the aggregation and dispersion state of AuNPs induced by high concentration NaCl through the specific binding of gliadin and aptamer, thereby achieving rapid detection of gliadin in flour. It is found that the sensor exhibits good linearity in the concentration range of 0.67-10 µM and the LOD (3σ/S) is 12 nM. And it can accurately distinguish various types of free-gliadin samples, with a spiked recovery rate of 85%-122.3%. To make the detection process more convenient, the colorimetric results of the biosensor were translated into RGB color-gamut parameters by a smartphone color-picking program for further analysis. Gliadin can still be accurately quantified with the established smartphone platform, and a correlation coefficient of 0.988 was found. The proposed portable smartphone aptamer colorimetric sensing device has achieved satisfactory results in the rapid detection of gliadin in food.

2.
Front Bioeng Biotechnol ; 10: 994711, 2022.
Article in English | MEDLINE | ID: mdl-36177181

ABSTRACT

Various biosensors based on aptamers are currently the most popular rapid detection approaches, but the performance of these sensors is closely related to the affinity of aptamers. In this work, a strategy for constructed high-affinity aptamer was proposed. By truncating the bases flanking the 59 nt dexamethasones (DEX) original aptamer sequence to improve the sensitivity of the aptamer to DEX, and then base mutation was introduced to further improve the sensitivity and selectivity of aptamers. Finally, the 33 nt aptamer Apt-M13 with G-quadruplex structures was obtained. The dissociation constant (Kd) was determined to be 200 nM by Graphene oxide (GO)-based fluorometry. As-prepared Apt-M13 was used for a label-free colorimetric aptamer sensor based on gold nanoparticles, the LOD was 3.2-fold lower than the original aptamer described in previous works. The anti-interference ability of DEX analogs is also further improved. It indicates that truncation technology effectively improves the specificity of the aptamer to DEX in this work, and the introduction of mutation further improves the affinity and selectivity of the aptamer to DEX. Therefore, the proposed aptamer optimization method is also expected to become a general strategy for various aptamer sequences.

3.
Biosensors (Basel) ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35448302

ABSTRACT

Residue and illegal addition of Dexamethasone (DEX) in food has received widespread attention over the past few decades. Long-term intake of DEX will have a strong endocrine-disrupting effect, and there is an urgent need to develop highly sensitive and rapid on-site detection methods. In this work, a colorimetric sensor based on an unmodified aptamer and gold nanoparticles (Au NPs) was designed to detect DEX in milk and glucosamine. Under optimized conditions, the absorbance ratio of Au NPs increased linearly with DEX concentration over the range of 10-350 nmol/mL (r2 = 0.997), with a limit of detection (LOD) of 0.5 nmol/mL, and the recoveries ranged from 93.6 to 117%. To explore the interaction mechanism between aptamer and DEX, molecular docking and molecular dynamics simulations were applied to probe intermolecular interactions and structures of the complex. The establishment of aptamer-based sensors effectively avoids the antibody screening response, with a cost-efficient, excellent selective and great potential in DEX determination.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Colorimetry/methods , Dexamethasone , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...