Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 587
Filter
1.
Article in English | MEDLINE | ID: mdl-38695237

ABSTRACT

AIMS: This study aimed to explore the change trend and group heterogeneity of psychosocial adjustment level and to determine its influencing factors among young and middle-aged patients with first-episode acute myocardial infarction (AMI). METHODS AND RESULTS: The Psychosocial Adjustment Scale of Illness was used to assess the psychosocial adjustment level of the patients at 1, 3, and 6 months after discharge, respectively. Data were analyzed using Pearson correlation analysis, generalized estimating equations, and growth mixed models. A total of 233 patients were included, and their psychosocial adjustment scores at the three-time points were 57.18 ± 15.50, 36.17 ± 15.02, and 24.22 ± 12.98, respectively. The trajectories of changes in patients' psychosocial adjustment levels were divided into three latent categories: moderate adjustment improvement group (72.5%), low adjustment improvement group (16.3%), and persistent maladjustment group (11.2%). Among them, predictors of the persistent maladjustment group included no spouse, low monthly family income per capita, normal body mass index, never smoking, never exercising, combined with hyperlipidemia, low social support, submission coping, and high perceived stress. CONCLUSIONS: The psychosocial adjustment level of young and middle-aged patients with first-episode AMI showed an upward trend within 6 months after discharge, and there was group heterogeneity in the change trajectory of psychosocial adjustment level. It is suggested that a multi-center, large-sample longitudinal study should be carried out in the future, and the time of follow-up investigation should be extended to further clarify the change trajectory and influencing factors of psychosocial adjustment of patients with different subtypes, to provide the theoretical basis for formulating targeted intervention programs.

2.
Foods ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38790877

ABSTRACT

Pork is one of the most widely produced and consumed meats in the world, and it is also an important source of animal protein. The continuous rise in feed prices has forced the pig industry to consider adding cost-effective alternative feed to pig diets. In this study, we aimed to explore the beneficial effects of tuna dark muscle as a nutritional supplement on the growth performance, serum lipids and antioxidant levels of Holland mini-piglets, as well as on the odor and volatile substances of pork and the gut microbiota. Two-month-old male mini-piglets (n = 24) were fed a control diet or supplemented with either 2% (LD) or 4% (HD) tuna dark muscle for 8 weeks. The use of tuna dark muscle at low and high dosages significantly increased the average daily weight gain, but it showed no significant effect on organ indices or blood lipids. In addition, dark muscle treatment significantly increased the antioxidant capacity, characterized by increased SOD and GSH-Px activities, and it decreased the content of MDA in serum. Moreover, tuna dark muscle feeding shifted the odor of rib muscle and tendon meat away from that of the control group, while similar odor patterns were observed in the longissimus dorsi muscle. Among these volatile substances, hexanal, nonanal, and heptanal increased in response to dietary tuna dark muscle and were regarded as indispensable contributors to the feeding. Furthermore, dietary tuna dark muscle modulated the gut microbiota of the piglets, increasing the abundance of beneficial bacteria such as butyric acid-producing bacteria, and reduced the abundance of harmful bacteria. The feeding strategy reported in this study not only reduces the production costs of pork but also utilizes tuna processing by-products in an environmentally friendly way.

3.
Front Bioeng Biotechnol ; 12: 1363227, 2024.
Article in English | MEDLINE | ID: mdl-38798955

ABSTRACT

In this study, we explored the growing use of metal-organic framework (MOF)-based Nanozymes in biomedical research, with a specific emphasis on their applications in stroke therapy. We have discussed the complex nature of stroke pathophysiology, highlighting the crucial role of reactive oxygen species (ROS), and acknowledging the limitations of natural enzymes in addressing these challenges. We have also discussed the role of nanozymes, particularly those based on MOFs, their structural similarities to natural enzymes, and their potential to improve reactivity in various biomedical applications. The categorization of MOF nanozymes based on enzyme-mimicking activities is discussed, and their applications in stroke therapy are explored. We have reported the potential of MOF in treating stroke by regulating ROS levels, alleviation inflammation, and reducing neuron apoptosis. Additionally, we have addressed the challenges in developing efficient antioxidant nanozyme systems for stroke treatment. The review concludes with the promise of addressing these challenges and highlights the promising future of MOF nanozymes in diverse medical applications, particularly in the field of stroke treatment.

4.
Front Oncol ; 14: 1385073, 2024.
Article in English | MEDLINE | ID: mdl-38800399

ABSTRACT

Objective: To investigate the clinical manifestations, imaging and pathological features, treatment methods and prognosis of primary leiomyosarcoma of kidney, and the choice of treatment with tumor thrombus. Methods: The clinical data of a patient with primary renal leiomyosarcoma complicated with inferior vena cava and right atrial tumor thrombus were retrospectively analyzed. Radical resection of right kidney without cardiopulmonary bypass and removal of inferior vena cava and right atrial tumor thrombus were performed. Adjuvant intravenous chemotherapy was given according to the results, and follow-up observation was made. Results: Postoperative pathological findings were: leiomyosarcoma (right renal tumor), the size of the mass was about 12.1 cm, and no cancer was found at the incision end of the right ureter. Conclusion: Primary leiomyosarcoma of kidney is rare in clinical practice, and complication of right atrial tumor embolus is even rarer. The disease has high malignant degree and poor prognosis. The clinical manifestations and imaging examinations were non-specific, and pathological diagnosis was the gold standard. Radical surgical resection is the main treatment method at present, and it provides experience for the treatment of grade IV tumor thrombus without cardiopulmonary bypass.

5.
Foods ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38731726

ABSTRACT

To enhance the resistant starch (RS) content of corn starch, in this work, carboxymethyl chitosan/corn starch/sodium alginate microcapsules (CMCS/CS/SA) with varying concentrations of SA in a citric acid (CA) solution were designed. As the SA concentration increased from 0.5% to 2%, the swelling of the CMCS/CS/SA microcapsule decreased from 15.28 ± 0.21 g/g to 3.76 ± 0.66 g/g at 95 °C. Comparatively, the onset, peak, and conclusion temperatures (To, Tp, and Tc) of CMCS/CS/SA microcapsules were higher than those of unencapsulated CS, indicating that the dense network structure of microcapsules reduced the contact area between starch granules and water, thereby improving thermal stability. With increasing SA concentration, the intact and dense network of CMCS/CS/SA microcapsules remained less damaged after 120 min of digestion, suggesting that the microcapsules with a high SA concentration provided better protection to starch, thereby reducing amylase digestibility. Moreover, as the SA concentration increased from 0.5% to 2%, the RS content of the microcapsules during in vitro digestion rose from 42.37 ± 0.07% to 57.65 ± 0.45%, attributed to the blocking effect of the microcapsule shell on amylase activity. This study offers innovative insights and strategies to develop functional starch with glycemic control properties, holding significant scientific and practical value in preventing diseases associated with abnormal glucose metabolism.

6.
Int J Biol Macromol ; 269(Pt 2): 132060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719014

ABSTRACT

In the context of starch-protein composite gels, the influence of protein on gel formation significantly shapes the textural attributes of starch gels, leading to distinct outcomes. This study aimed to evaluate how different ratios of pea protein (PP) affect the properties and structures of starch-protein composite gels at low (10 wt%) and high (40 wt%) solid concentrations. The addition of PP had opposite effects on the two gels. Compared to the pure starch gel, the low-concentration composite gel (LCG) with 20 % PP experienced a 48.90 ± 0.33 % reduction in hardness, and the storage modulus (G') decreased from 14,100 Pa to 5250 Pa, indicating a softening effect of PP on LCG. Conversely, the hardness of the high-concentration composite gel (HCG) with 20 % PP exhibited a 62.19 ± 0.03 % increase in hardness, and G' increased from 12,100 Pa to 41,700 Pa, highlighting the enhancing effect of PP on HCG. SEM and fluorescence microscopy images showed that PP induced uneven network sizes in LCG, while HCG with a PP content of 20 %, PP, together with starch, formed a three-dimensional network. This study provides valuable insights and guidance for the design and production of protein-enriched starch gel products with different textural properties.


Subject(s)
Gels , Pea Proteins , Starch , Starch/chemistry , Gels/chemistry , Pea Proteins/chemistry , Pisum sativum/chemistry , Hardness
7.
Mol Pharm ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781419

ABSTRACT

Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.

8.
Adv Mater ; : e2402001, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597787

ABSTRACT

Molecular semiconductor (MSC) is a promising candidate for spintronic applications benefiting from its long spin lifetime caused by light elemental-composition essence and thus weak spin-orbit coupling (SOC). According to current knowledge, the SOC effect, normally dominated by the elemental composition, is the main spin-relaxation causation in MSCs, and thus the molecular structure-induced SOC change is one of the most concerned issues. In theoretical study, molecular isomerism, a most prototype phenomenon, has long been considered to possess little difference on spin transport previously, since elemental compositions of isomers are totally the same. However, here in this study, quite different spin-transport performances are demonstrated in ITIC and its structural isomers BDTIC experimentally, for the first time, though the charge transport and molecular stacking of the two films are very similar. By further experiments of electron-paramagnetic resonance and density-functional-theory calculations, it is revealed that noncovalent-conformational locks (NCLs) formed in BDTIC can lead to enhancement of SOC and thus decrease the spin lifetime. Hence, this study suggests the influences from the structural-isomeric effect must be considered for developing highly efficient spin-transport MSCs, which also provides a reliable theoretical basis for solving the great challenge of quantificational measurement of NCLs in films in the future.

9.
Braz J Otorhinolaryngol ; 90(4): 101411, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38663041

ABSTRACT

OBJECTIVES: The role of Epoxide Hydrolase-4 (EPHX4), a member of epoxide hydrolase family, has not been investigated in cancer. The purpose of this article is to explore the application value of EPHX4 in laryngeal cancer and its relationship with immune infiltration. METHODS: We observed that EPHX4 expression and its survival assays in laryngeal cancer specimens based on The Cancer Genome Atlas (TCGA) cohorts. We also analyzed the correlation between immune cell infiltration levels and EPHX4 gene copy number in laryngeal cancer. Finally, we conducted in vitro assay to evaluate the functions of EPHX4 in laryngeal cancer cell line. RESULTS: EPHX4 is highly expressed in laryngeal cancer specimens and has a poor prognosis. EPHX4 related immune cell analysis showed that it participated in NK Natural killer cell mediated cytotoxicity. Finally, Cell experiments indicate that EPHX4 could promote laryngeal cancer cell line proliferation, colony formation and invasion. CONCLUSIONS: Our research results suggest that EPHX4 may be a potential immunotherapy target for laryngeal cancer. The nominated immune signature is a helpful and promising prognostic indicator in laryngeal cancer. LEVELS OF EVIDENCE: Level 3.

10.
Sci Total Environ ; 928: 172299, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614340

ABSTRACT

This study assesses the association of short-term exposure to PM2.5 (particles ≤2.5 µm) on infectious diseases among Chinese children and adolescents. Analyzing data from 507 cities (2008-2021) on 42 diseases, it focuses on PM2.5 components (black carbon (BC), ammonium (NH4+), inorganic nitrate (NO3-), organic matter (OM), and sulfate (SO42-)). PM2.5 constituents significantly associated with incidence. Sulfate showed the most substantial effect, increasing all-cause infectious disease risk by 2.72 % per interquartile range (IQR) increase. It was followed by BC (2.04 % increase), OM (1.70 %), NO3- (1.67 %), and NH4+ (0.79 %). Specifically, sulfate and BC had pronounced impacts on respiratory diseases, with sulfate linked to a 10.73 % increase in seasonal influenza risk and NO3- to a 16.39 % rise in tuberculosis. Exposure to PM2.5 also marginally increased risks for gastrointestinal, enterovirus, and vectorborne diseases like dengue (7.46 % increase with SO42-). Sexually transmitted and bloodborne diseases saw an approximate 6.26 % increase in incidence, with specific constituents linked to diseases like hepatitis C and syphilis. The study concludes that managing PM2.5 levels could substantially reduce infectious disease incidence, particularly in China's middle-northern regions. It highlights the necessity of stringent air quality standards and targeted disease prevention, aligning PM2.5 management with international guidelines for public health protection.


Subject(s)
Air Pollutants , Cities , Communicable Diseases , Environmental Exposure , Particulate Matter , Humans , Particulate Matter/analysis , China/epidemiology , Adolescent , Child , Communicable Diseases/epidemiology , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Cross-Over Studies , Male , East Asian People
11.
Sci Total Environ ; 927: 172233, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615759

ABSTRACT

OBJECTIVE: Children and adolescents are particularly vulnerable to the effects of various environmental factors, which could disrupt growth processes and potentially lead to obesity. Currently, comprehensive and systematic assessments of these environmental exposures during developmental periods are lacking. Therefore, this study aims to evaluate the association between external environmental exposures and the incidence of obesity in children and adolescents. METHODS: Data was collected from the 2019 Chinese National Survey on Students' Constitution and Health, including 214,659 Han children aged 7 to 19. Body Mass Index (BMI) and BMI-for-age z-score (zBMI) were the metrics used to assess overweight and obesity prevalence. The study assessed 18 environmental factors, including air pollutants, natural space, land cover, meteorological conditions, built environment, road conditions, and artificial light at night. Exposome-wide association study (ExWAS) to analyze individual exposures' associations with health outcomes, and Weighted Quantile Sum (WQS) to assess cumulative exposure effects. RESULTS: Among the children and adolescents, there were 24.2 % participants classified as overweight or obesity. Notably, 17 out of 18 environmental factors exhibited significant associations with zBMI and overweight/obesity. Seven air pollutants, road conditions, and built density were positively correlated with higher zBMI and obesity risk, while NDVI, forests, and meteorological factors showed negative correlations. Co-exposure analysis highlighted that SO2, ALAN, PM10, and trunk road density significantly increased zBMI, whereas rainfall, grassland, and forest exposure reduced it. Theoretically reduction in the number and prevalence of cases was calculated, indicating potential reductions in prevalence of up to 4.51 % for positive exposures and 5.09 % for negative exposures. Notably, substantial reductions were observed in regions with high pollution levels. CONCLUSION: This large-scale investigation, encompassing various environmental exposures in schools, highlights the significant impact of air pollution, road characteristics, rainfall, and forest coverage on childhood obesity.


Subject(s)
Air Pollutants , Environmental Exposure , Exposome , Humans , Child , Adolescent , Environmental Exposure/statistics & numerical data , China/epidemiology , Female , Male , Air Pollutants/analysis , Pediatric Obesity/epidemiology , Air Pollution/statistics & numerical data , Young Adult , Body Mass Index , Prevalence
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657551

ABSTRACT

BACKGROUND: The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS: We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS: TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS: TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , RNA-Binding Proteins , Toll-Like Receptor 4 , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Humans , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Animals , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Up-Regulation , Cell Line, Tumor , Disease Progression , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Male , Ubiquitination , Mice, Nude , Female , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
13.
Nanoscale ; 16(18): 9075-9083, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38639490

ABSTRACT

Achieving control over symmetry breaking of completely achiral components in the aqueous phase is a significant challenge in supramolecular chemistry. Herein, we demonstrate that it is possible to construct chiral nanoassemblies by introducing metal ions (Zn2+, Fe3+, Al3+, Cu2+, and Ca2+) into completely achiral azobenzene amphiphiles with key structural factors in the pure aqueous phase. It is found that the coordination interactions, π-π stacking, hydrophilic and hydrophobic interactions, hydrogen bonding, and electrostatic interactions are crucial to the metal-ion-induced symmetry breaking of completely achiral building blocks. This study may provide an intriguing model system for constructing chiral assemblies based on completely achiral molecules.

14.
Biosens Bioelectron ; 255: 116203, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38531225

ABSTRACT

DNA nanomaterials have a wide application prospect in biomedical field, among which DNA computers and biosensors based on Seesaw-based DNA circuit is considered to have the most development potential. However, the serious leakage of Seesaw-based DNA circuit prevented its further development and application. Moreover, the existing methods to suppress leakage can't achieve the ideal effect. Interestingly, we found a new source of leakage in Seesaw-based DNA circuit, which we think is the main reason why the previous methods to suppress leakage are not satisfactory. Therefore, based on this discovery, we use DNA triplex to design a new method to suppress the leakage of Seesaw-based DNA circuit. Its ingenious design makes it possible to perfectly suppress the leakage of all sources in Seesaw-based DNA circuit and ensure the normal output of the circuit. Based on this technology, we have constructed basic Seesaw module, AND gate, OR gate, secondary complex circuits and DNA detector. Experimental results show that we can increase the working range of the secondary Seesaw-based DNA circuit by five folds and keep its normal output signal above 90%, and we can improve the LOD of the Seesaw-based DNA detector to 1/11 of the traditional one(1.8pM). More importantly, we successfully developed a detector with adjustable detection range, which can theoretically achieve accurate detection in any concentration range. We believe the established triplex blocking strategy will greatly facilitate the most powerful Seesaw based DNA computers and biosensors, and further promote its application in biological systems.


Subject(s)
Biosensing Techniques , Nanostructures , DNA/genetics , Computers, Molecular
15.
Huan Jing Ke Xue ; 45(2): 626-634, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471903

ABSTRACT

Based on the hourly concentration data of fine particulate matter (PM2.5) and ozone (O3) in Nanjing from 2015 to 2019, the synoptic situation that occurred in Nanjing, in which high PM2.5 and high O3 coexisted (hereinafter referred to as double high pollution (DHP)), was typed using T-mode principal component analysis. Additionally, the backward trajectory clustering analysis method, potential source contribution method (PSCF), and concentration weight trajectory analysis method (CWT) were used to study the transport paths and potential source region distribution of the DHP of Nanjing by different synoptic situations. The synoptic situations favorable to the DHP in Nanjing were the control of weak low-pressure type (Type1) and high-pressure center (Type2). Synoptic situations could have had an effect on the directional origin of the backward trajectory. In Type1, the Nanjing area was affected by two low pressures in the northeast and southwest, and the clustering trajectories of the Nanjing air mass mainly came from the eastern and western directions. The average concentrations of PM2.5 and O3 in the trajectory were 83.48 µg·m-3 and 106.85 µg·m-3, respectively. In Type 2, Nanjing and its surroundings were at the edge of the high-pressure center, and the air mass cluster trajectories mainly came from the north and east. The average concentrations of PM2.5 and O3 in the trajectory were 94.47 µg·m-3 and 92.32 µg·m-3, respectively. Most of the two types of backward trajectories belonged to short and medium-distance regional transportation, indicating that the pollution of neighboring provinces was one of the main factors affecting the DHP in Nanjing. PSCF and CWT analysis showed that the distribution of the most important potential sources of PM2.5 and O3 in Type1 and Type2 were not completely consistent, which indicates that the two pollutants did not come from the same area in the DHP.

16.
Clin Transl Allergy ; 14(2): e12341, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343066

ABSTRACT

BACKGROUND: The efficacy and safety of the novel immunotherapy method, intra-cervical lymphatic immunotherapy (ICLIT), need to be investigated. Comparing it with subcutaneous immunotherapy (SCIT), we clarified the long-term efficacy and safety of intra-cervical lymphatic immunotherapy on allergic rhinitis (AR), and investigated the improvement of clinical efficacy of the booster injection at 1 year after ICLIT treatment. METHODS: Ninety adult patients with dust mite allergy were randomly divided into 3 groups: 30 in the SCIT group, 30 in the ILCLIT group, and 30 in ICLIT booster group. Changes in total symptom score (TSS), nasal symptom score (TNSS), ocular symptom score (TOSS) and total medication score (TMS) were evaluated in the three groups. Adverse reactions were recorded, and serum dust mite specific IgE (sIgE) and specific IgG4 were assessed in the ICLIT group and ICLIT booster group. RESULTS: TSS, TNSS, TOSS, and TMS scores were significantly lower in the three groups at 36 months after treatment (p < 0. 05). And at 36 months the ICLIT-booster group showed results similar to SCIT and superior to ICLIT (p < 0. 05). Serum specific IgE decreased in all three groups at 12 and 36 months after treatment, p < 0.01. The ICLIT group and the ICLIT booster group showed a significant increase in sIgG4, p < 0.01. None of the patients in the three groups had any serious systemic adverse effects during the 3-year follow-up. CONCLUSION: The ICLIT treatment is effective and safe on AR. One booster injection of allergens at 1 year can greatly improve its long-term efficacy. TRIAL REGISTRY: Clinical trial registration number: ChiCTR1800017130.

17.
Nat Commun ; 15(1): 1401, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360878

ABSTRACT

Mammals exhibit different rates of cancer, with long-lived species generally showing greater resistance. Although bats have been suggested to be resistant to cancer due to their longevity, this has yet to be systematically examined. Here, we investigate cancer resistance across seven bat species by activating oncogenic genes in their primary cells. Both in vitro and in vivo experiments suggest that Myotis pilosus (MPI) is particularly resistant to cancer. The transcriptomic and functional analyses reveal that the downregulation of three genes (HIF1A, COPS5, and RPS3) largely contributes to cancer resistance in MPI. Further, we identify the loss of a potential enhancer containing the HIF1A binding site upstream of COPS5 in MPI, resulting in the downregulation of COPS5. These findings not only provide direct experimental evidence for cancer resistance in a bat species but also offer insights into the natural mechanisms of cancer resistance in mammals.


Subject(s)
Chiroptera , Neoplasms , Animals , Humans , Chiroptera/genetics , Mammals/genetics , Transcriptome , Gene Expression Profiling , Neoplasms/genetics
18.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 88-93, 2024 Jan 30.
Article in Chinese | MEDLINE | ID: mdl-38384224

ABSTRACT

In recent years, China has made great progress in basic nanomedicine, nanotoxicology and nanobiology research. Nanotechnology has been continuously applied in biomaterial and medical device, more and more medical devices applying nanomaterials are developed and manufactured. In order to gain more comprehension and accurate understanding of the research and industrial development in nanobiomaterial medical devices, this study reviewed the common nanomaterial in medical devices and the regulatory situation of nanomaterial medical devices at home and abroad, and discussed the current challenges in biological evaluation of nanomaterial medical devices, with a view to providing ideas for the safety evaluation and research of related products.


Subject(s)
Nanostructures , Nanotechnology , Nanomedicine , Biocompatible Materials , China
19.
Environ Toxicol ; 39(5): 2817-2829, 2024 May.
Article in English | MEDLINE | ID: mdl-38291708

ABSTRACT

INTRODUCTION: Allergic rhinitis (AR) is one of the leading allergic diseases worldwide. Allergen immunotherapy (AIT) induces persistent specific allergen tolerance to achieve remission of the symptoms in AR patients. We creatively conducted the intra-cervical lymphatic immunotherapy (ICLIT) for AR patients. However, the underlying molecular mechanism of immune cell response of AIT in AR remains elusive. METHOD: To investigate the transcriptome profile in AR patients who underwent ICLIT, we comprehensively investigated the transcriptional changes in B cells from peripheral blood mononuclear cells of AR patient by single-cell RNA sequencing. Immunoglobulins and relative key gene, which influences the B cell differentiation, was demonstrated. The biomarkers' association with different types of tumors was investigated. RESULTS: Naive B cells, germinal center B cells, activated memory B cells, and memory B cells constituted the B cells subsets. The expression of IGHE, IGHGs, IGHA, IGHD, and IGHM from memory B cells was validated. Pseudotime analysis further indicated the dynamic change from the expression of the immunoglobulins in the memory B cells, suggesting that ITGB1 may contribute to the differentiation procedure of memory B cells. The cell-cell communication among these immune cells demonstrated the significantly enhanced CD23, BTLA signaling after ICLIT in AR patient. ITGB1 was upregulated in 13 tumors and downregulated in six others. High ITGB1 expression was linked to poor prognosis in eight types of tumors. ITGB1 expression showed correlations with tumor mutation burden, tissue purity, and microsatellite instability in different types of tumors. DISCUSSION: ITGB1 was demonstrated as a potential biomarker for AR patients after ICLIT and is significant in identifying immune infiltration in tumor tissue and predicting tumor prognosis.


Subject(s)
Neoplasms , Rhinitis, Allergic , Humans , Leukocytes, Mononuclear , Rhinitis, Allergic/genetics , Rhinitis, Allergic/therapy , Rhinitis, Allergic/diagnosis , Immunoglobulins , Biomarkers , Sequence Analysis, RNA
20.
Nanoscale ; 16(9): 4392-4406, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38289178

ABSTRACT

Gene therapy is a revolutionary treatment approach in the 21st century, offering significant potential for disease prevention and treatment. However, the efficacy of gene delivery is often compromised by the inherent challenges of gene properties and vector-related defects. It is crucial to explore ways to enhance the curative effect of gene drugs and achieve safer, more widespread, and more efficient utilization, which represents a significant challenge in amplification gene therapy advancements. Spherical nucleic acids (SNAs), with their unique physicochemical properties, are considered an innovative solution for scalable gene therapy. This review aims to comprehensively explore the amplifying contributions of SNAs in gene therapy and emphasize the contribution of SNAs to the amplification effect of gene therapy from the aspects of structure, application, and recent clinical translation - an aspect that has been rarely reported or explored thus far. We begin by elucidating the fundamental characteristics and scaling-up properties of SNAs that distinguish them from traditional linear nucleic acids, followed by an analysis of combined therapy treatment strategies, theranostics, and clinical translation amplified by SNAs. We conclude by discussing the challenges of SNAs and provide a prospect on the amplification characteristics. This review seeks to update the current understanding of the use of SNAs in gene therapy amplification and promote further research into their clinical translation and amplification of gene therapy.


Subject(s)
Nucleic Acids , Nucleic Acids/therapeutic use , Nucleic Acids/chemistry , Genetic Therapy/methods , Gene Transfer Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...