Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Synth Biol ; 12(9): 2616-2631, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37646406

ABSTRACT

In the past decades, various xenobiotic nucleic acids (XNAs), including 2'-modified nucleic acids, have been developed as novel genetic materials and demonstrated great potential in synthetic biology and biotechnology. Enzymatic polymerization and replication of these artificial polymers are obviously the prerequisite to make full use of them, and DNA and RNA polymerases from different families have thus been extensively engineered for these purposes. However, the performance of engineered XNA polymerases is still far from satisfactory, especially in terms of the efficiency of synthesizing XNA with bigger lengths and the capability of directly replicating XNAs or transcribing one XNA to another. In this work, we tailored a mutant of Stoffel fragment of Taq DNA polymerase, SFM4-3, by engineering a key residue pair on the surfaces of fingers and thumb domains, and successfully obtained mutants with significantly enhanced efficiency for the synthesis of fully 2'-OMe-modified DNA with bigger lengths. Remarkably, we also found that these polymerase mutants are capable of synthesizing, reverse transcribing, and even replicating RNA and different fully 2'-modified XNAs, as well as transcribing one of these nucleic acids to another, with varied efficiencies. The application of these activities for producing DNA strands end-protected by XNA duplexes was then demonstrated. These results clearly suggest that the genetic information can be stored in and transmitted among DNA, RNA, and different 2'-modified XNAs with the assistance of polymerase mutants, and the central dogma of life can be expanded to higher dimensions via the development of XNAs together with engineering their polymerases.


Subject(s)
Nucleic Acids , Humans , Nucleic Acids/genetics , Reverse Transcription , RNA/genetics , Biotechnology , DNA Replication/genetics
2.
Int J Anthropol Ethnol ; 7(1): 3, 2023.
Article in English | MEDLINE | ID: mdl-36968148

ABSTRACT

Social network theories are used extensively to analyze the international migration of Chinese to overseas regions in the era of Market Economy Reform since 1978. Attention is paid especially on the role of social networks among overseas Chinese on disaster relief in China. Focusing on the ongoing COVID-19 pandemic, this paper investigates how social networks work as a crucial mechanism through which Chinese immigrants in Germany initiated and delivered monetary and material donations to China in early 2020 and then organized self-help in their everyday lives in Germany in late 2020. Different from previous studies, this paper scrutinizes social networks for disaster relief on the macro, meso, and micro levels. Multi-site ethnographic fieldwork in China and Germany combined with online and offline data collected from focus group sessions, interviews with individuals, participant observations, surveys, analysis of news reports on the pandemic, and analysis on relevant policies are utilized comprehensively to collect data on the three levels. This research discovers that internet tools - represented by WeChat - have integrated tightly into the traditional social networks of Chinese immigrants and consolidated the cultural cohesion from overseas Chinese to their connections in China. This paper aims at contributing to present studies on Chinese new immigrants, social network, and disaster management theories with an updated ethnographic case on the COVID-19 pandemic from Germany.

3.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499296

ABSTRACT

Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.


Subject(s)
Nucleic Acids , Nucleic Acids/genetics , DNA/genetics , RNA/genetics , Reverse Transcription , Nucleotidyltransferases/genetics
4.
RSC Chem Biol ; 3(10): 1173-1197, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36320892

ABSTRACT

Nucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts. The introduction of unnatural nucleic acids into living organisms has also started expanding the central dogma in vivo. In this article, we first summarize the development of unnatural nucleic acids with modifications or alterations in different moieties. The strategies for engineering DNAPs and RNAPs are then extensively reviewed, followed by summarization of predominant polymerase mutants with good activities for synthesizing, reverse transcribing, or even amplifying unnatural nucleic acids. Some recent application examples of unnatural nucleic acids with their polymerases are then introduced. At the end, the approaches of introducing UBPs and synthetic genetic polymers into living organisms for the creation of semi-synthetic organisms are reviewed and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...