Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 930: 172859, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38692316

ABSTRACT

Nitrate, as a crucial nutrient, is consistently targeted for controlling water eutrophication globally. However, there is considerable evidence suggesting that nitrate has endocrine-disrupting potential on aquatic organisms. In this study, the sensitivity of various adverse effects to nitrate nitrogen (nitrate-N) was compared, and a toxicity threshold based on endocrine-disrupting effects was derived. The spatiotemporal variations of nitrate-N concentrations in the Luan River basin were investigated, and the associated aquatic ecological risks were evaluated using a comprehensive approach. The results showed that reproduction and development were the most sensitive endpoints to nitrate, and their distribution exhibited significant differences compared to behavior. The derived threshold based on endocrine-disrupting effects was 0.65 mgL-1, providing adequate protection for the aquatic ecosystem. In the Luan River basin, the mean nitrate-N concentrations during winter (4.4 mgL-1) were significantly higher than those observed in spring (0.7 mgL-1) and summer (1.2 mgL-1). Tributary inputs had an important influence on the spatial characteristics of nitrate-N in the mainstream, primarily due to agricultural and population-related contamination. The risk quotients (RQ) during winter, summer, and spring were evaluated as 6.7, 1.8, and 1.1, respectively, and the frequency of exposure concentrations exceeding the threshold was 100 %, 64.3 %, and 42.5 %, respectively. At the ecosystem level, nitrate posed intermediate risks to aquatic organisms during winter and summer in the Luan River basin and at the national scale in China. We suggest that nitrate pollution control should not solely focus on water eutrophication but also consider the endocrine disruptive effect on aquatic animals.


Subject(s)
Endocrine Disruptors , Environmental Monitoring , Nitrates , Rivers , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , China , Endocrine Disruptors/analysis , Nitrates/analysis , Animals , Risk Assessment , Aquatic Organisms/drug effects , Ecosystem
2.
Opt Express ; 32(7): 12358-12367, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571060

ABSTRACT

Due to the characteristics of ultra-short pulse width and ultra-high peak power, femtosecond pulse laser can effectively induce nonlinear optical effects in trapped objects. As a result, it holds great value in the fields of micro and nano manipulation, microfluidics, and cell biology. However, the nonlinear optical effects on the stiffness of femtosecond optical traps remain unclear. Calibration of trap stiffness is crucial for accurately measuring forces and manipulating small particles. In this paper, we compare the stiffness between femtosecond optical traps and continuous wave optical traps. Experimental results demonstrate that the stiffness of the femtosecond optical trap in the splitting direction is greater than that in other directions and the stiffness of the continuous wave optical trap under the same laser power condition. Additionally, as the laser power increases, the stiffnesses of both the femtosecond optical trap and the continuous wave optical trap gradually increases. In contrast to a linear increase of the continuous wave optical trap, the stiffness of the femtosecond optical trap exhibits an exponential rise with increasing laser power. This research provides guidance and reference for improving the force measurement accuracy of femtosecond optical tweezer system.

3.
Dev Cell ; 58(22): 2528-2544.e8, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37699389

ABSTRACT

As evolutionarily conserved organelles, lipid droplets (LDs) carry out numerous functions and have various subcellular localizations in different cell types and species. In avian cone cells, there is a single apically localized LD. We demonstrated that CIDEA (cell death inducing DFFA like effector a) and microtubules promote the formation of the single LD in chicken cone cells. Centrins, which are well-known centriole proteins, target to the cone cell LD via their C-terminal calcium-binding domains. Centrins localize on cone cell LDs with the help of SPDL1-L (spindle apparatus coiled-coil protein 1-L), a previously uncharacterized isoform of the kinetochore-associated dynein adaptor SPDL1. The loss of CETN3 or overexpression of a truncated CETN1 abrogates the apical localization of the cone cell LD. Simulation analysis showed that multiple LDs or a single mispositioned LD reduces the light sensitivity. Collectively, our findings identify a role of centrins in the regulation of cone cell LD localization, which is important for the light sensitivity of cone cells.


Subject(s)
Chickens , Lipid Droplets , Animals , Lipid Droplets/metabolism , Chickens/metabolism , Photophobia/metabolism , Proteins/metabolism , Lipids , Lipid Metabolism
4.
Nat Commun ; 12(1): 3722, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140523

ABSTRACT

The ability of light beams to rotate nano-objects has important applications in optical micromachines and biotechnology. However, due to the diffraction limit, it is challenging to rotate nanoparticles at subwavelength scale. Here, we propose a method to obtain controlled fast orbital rotation (i.e., circumgyration) at deep subwavelength scale, based on the nonlinear optical effect rather than sub-diffraction focusing. We experimentally demonstrate rotation of metallic nanoparticles with orbital radius of 71 nm, to our knowledge, the smallest orbital radius obtained by optical trapping thus far. The circumgyration frequency of particles in water can be more than 1 kHz. In addition, we use a femtosecond pulsed Gaussian beam rather than vortex beams in the experiment. Our study provides paradigms for nanoparticle manipulation beyond the diffraction limit, which will not only push toward possible applications in optically driven nanomachines, but also spur more fascinating research in nano-rheology, micro-fluid mechanics and biological applications at the nanoscale.

5.
Opt Lett ; 45(22): 6266-6269, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33186966

ABSTRACT

Particles trapped by optical tweezers, behaving as mechanical oscillators in an optomechanical system, have found tremendous applications in various disciplines and are still arousing research interest in frontier and fundamental physics. These optically trapped oscillators provide compact particle confinement and strong oscillator stiffness. But these features are limited by the size of the focused light spot of a laser beam, which is typically restricted by the optical diffraction limit. Here, we propose to build an optical potential well with fine features assisted by the nonlinearity of the particle material, which is independent of the optical diffraction limit. We show that the potential well shape can have super-oscillation-like features and a Fano-resonance-like phenomenon, and the width of the optical trap is far below the diffraction limit. A particle with nonlinearity trapped by an ordinary optical beam provides a new platform with a sub-diffraction potential well and can have applications in high-accuracy optical manipulation and high-precision metrology.

SELECTION OF CITATIONS
SEARCH DETAIL
...