Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Ethnobiol Ethnomed ; 20(1): 52, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755671

ABSTRACT

BACKGROUND: The Baiku Yao, primarily residing in Guangxi and Guizhou provinces of China, is a distinctive branch of the Yao ethnic group, known for their profound cultural preservation and unique ethnobotanical knowledge. This study investigates the Baiku Yao community's utilization of traditional food plants, focusing on the relationship between their dietary practices and the local biodiversity within their mountainous living environment. It aims to illuminate the cultural significance and survival strategies embedded in their ethnobotanical knowledge, highlighting the potential for sustainable living and biodiversity conservation. METHODS: Through ethnobotanical surveys, key informant interviews, and quantitative analysis techniques such as the cultural food significance index (CFSI) and relative frequency of citations (RFC), this research systematically documents the diversity and cultural importance of edible plants in the Baiku Yao community. The study assesses how these plants contribute to the community's diet, traditional medicine, and overall cultural practices. RESULTS: A total of 195 traditional edible plants were documented, belonging to 142 genera and 68 families, with a significant concentration in certain families such as Asteraceae, Rosaceae, and Fabaceae. The Baiku Yao diet prominently features herbaceous plants, with wild (103 species) and cultivated (89 species) varieties as diverse food sources. They utilize various plant parts, particularly fruits and leaves, for multiple purposes, including nutrition, medicine, and fodder. Their processing techniques, from raw to fermented, showcase a rich culinary tradition and emphasize a holistic use of plants for enhancing diet and health in a concise overview. The RFC and CFSI analyses reveal a deep cultural reliance on a variety of plant species, with a notable emphasis on vegetables, fruits, spices, and medicinal herbs. Specific plants like Zingiber officinale, Zea mays, and Oryza sativa were highlighted for their high cultural significance. The study also uncovers the multifunctional use of these plants, not only as food but also for medicinal purposes, fodder, and other cultural applications, reflecting the Baiku Yao's profound ecological wisdom and their harmonious coexistence with nature. CONCLUSION: The findings emphasize the rich ethnobotanical knowledge possessed by the Baiku Yao, underscoring the importance of documenting, safeguarding, and transmitting this invaluable traditional knowledge. This study contributes to a deeper understanding of cultural heritage and biodiversity conservation, advocating for concerted efforts to protect such traditional practices against the threats of modernization and cultural erosion.


Subject(s)
Conservation of Natural Resources , Ethnobotany , Plants, Edible , Female , Humans , Male , Middle Aged , Biodiversity , China , Diet , Ethnicity , Knowledge , Plants, Edible/classification , Plants, Medicinal , Young Adult , Adult , Aged , Aged, 80 and over
2.
BMC Infect Dis ; 23(1): 901, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129813

ABSTRACT

BACKGROUND: The differential diagnosis between tuberculous meningitis (TBM) and viral meningitis (VM) or bacterial meningitis (BM) remains challenging in clinical practice, particularly in resource-limited settings. This study aimed to establish a diagnostic model that can accurately and early distinguish TBM from both VM and BM in adults based on simple clinical and laboratory parameters. METHODS: Patients diagnosed with TBM or non-TBM (VM or BM) between January 2012 and October 2021 were retrospectively enrolled from the General Hospital (derivation cohort) and Branch Hospital (validation cohort) of Ningxia Medical University. Demographic characteristics, clinical symptoms, concomitant diseases, and cerebrospinal fluid (CSF) parameters were collated. Univariable logistic analysis was performed in the derivation cohort to identify significant variables (P < 0.05). A multivariable logistic regression model was constructed using these variables. We verified the performance including discrimination, calibration, and applicability of the model in both derivation and validation cohorts. RESULTS: A total of 222 patients (70 TBM and 152 non-TBM [75 BM and 77 VM]) and 100 patients (32 TBM and 68 non-TBM [31 BM and 37 VM]) were enrolled as derivation and validation cohorts, respectively. The multivariable logistic regression model showed that disturbance of consciousness for > 5 days, weight loss > 5% of the original weight within 6 months, CSF lymphocyte ratio > 50%, CSF glucose concentration < 2.2 mmol/L, and secondary cerebral infarction were independently correlated with the diagnosis of TBM (P < 0.05). The nomogram model showed excellent discrimination (area under the curve 0.959 vs. 0.962) and great calibration (P-value in the Hosmer-Lemeshow test 0.128 vs. 0.863) in both derivation and validation cohorts. Clinical decision curve analysis showed that the model had good applicability in clinical practice and may benefit the entire population. CONCLUSIONS: This multivariable diagnostic model may help clinicians in the early discrimination of TBM from VM and BM in adults based on simple clinical and laboratory parameters.


Subject(s)
Meningitis, Bacterial , Meningitis, Viral , Tuberculosis, Meningeal , Adult , Humans , Tuberculosis, Meningeal/cerebrospinal fluid , Retrospective Studies , Meningitis, Bacterial/diagnosis , Diagnosis, Differential , Meningitis, Viral/diagnosis , Early Diagnosis
3.
Nano Lett ; 23(20): 9227-9234, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37791735

ABSTRACT

Crafting vacancies offers an efficient route to upgrade the selectivity and productivity of nanomaterials for CO2 electroreduction. However, defective nanoelectrocatalysts bear catalytically active vacancies mostly on their surface, with the rest of the interior atoms adiaphorous for CO2-to-product conversion. Herein, taking nanosilver as a prototype, we arouse the catalytic ability of internal atoms by creating homogeneous vacancies realized via electrochemical reconstruction of silver halides. The homogeneous vacancies-rich nanosilver, compared to the surface vacancies-dominated counterpart, features a more positive d-band center to trigger an intensified hybridization of the Ag_d orbital with the C_P orbital of the *COOH intermediate, leading to an accelerated CO2-to-CO transformation. These structural and electronic merits allow a large-area (9 cm-2) electrode to generate nearly pure CO with a CO/H2 Faradaic efficiency ratio of 6932 at an applied current of 7.5 A. These findings highlight the potential of designing new-type defects in realizing the industrialization of electrocatalytic CO2 reduction.

4.
Foods ; 12(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37893758

ABSTRACT

With the development of diabetes, the gut microbiome falls into a state of dysbiosis, further affecting its progression. Theaflavins (TFs), a type of tea polyphenol derivative, show anti-diabetic properties, but their effect on the gut microbiome in diabetic mice is unclear. It is unknown whether the improvement of TFs on hyperglycemia and hyperlipidemia in diabetic mice is related to gut microbiota. Therefore, in this study, different concentrations of TFs were intragastrically administered to mice with diabetes induced by a high-fat-diet to investigate their effects on blood glucose, blood lipid, and the gut microbiome in diabetic mice, and the plausible mechanism underlying improvement in diabetes was explored from the perspective of the gut microbiome. The results showed that the TFs intervention significantly improved the hyperglycemia and hyperlipidemia of diabetic mice and affected the structure of the gut microbiome by promoting the growth of bacteria positively related to diabetes and inhibiting those negatively related to diabetes. The changes in short-chain fatty acids in mice with diabetes and functional prediction analysis suggested that TFs may affect carbohydrate metabolism and lipid metabolism by regulating the gut microbiome. These findings emphasize the ability of TFs to shape the diversity and structure of the gut microbiome in mice with diabetes induced by a high-fat diet combined with streptozotocin and have practical implications for the development of functional foods with TFs.

5.
Metab Brain Dis ; 38(2): 409-418, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35670992

ABSTRACT

To investigate the effect of rapamycin on mitochondrial dynamic balance in diabetic rats subjected to cerebral ischemia-reperfusion injury. Male Sprague Dawley (SD) rats (n = 78) were treated with high fat diet combined with streptozotocin injection to construct diabetic model in rats. Transient middle cerebral artery occlusion (MCAO) of 2 hours was induced and the brains were harvested after 1 and 3 days of reperfusion. Rapamycin was injected intraperitoneally for 3 days prior to and immediately after operation, once a day. The neurological function was assessed, infarct volumes were measured and HE staining as well as immunohistochemistry were performed. The protein of hippocampus was extracted and Western blotting were performed to detect the levels of mTOR, mitochondrial dynamin related proteins (DRP1, p-DRP1, OPA1), SIRT3, and Nix/BNIP3L. Diabetic hyperglycemia worsened the neurological function performance (p < 0.01), enlarged infarct size (p < 0.01) and increased ischemic neuronal cell death (p < 0.01). The increased damage was associated with elevations of p-mTOR, p-S6, and p-DRP1; and suppressions of SIRT3 and Nix/BNIP3L. Rapamycin ameliorated diabetes-enhanced ischemic brain damage and reversed the biomarker alterations caused by diabetes. High glucose activated mTOR pathway and caused mitochondrial dynamics toward fission. The protective effect of rapamycin against diabetes-enhanced ischemic brain damage was associated with inhibiting mTOR pathway, redressing mitochondrial dynamic imbalance, and elevating SIRT3 and Nix/BNIP3L expression.


Subject(s)
Brain Injuries , Brain Ischemia , Diabetes Mellitus, Experimental , Reperfusion Injury , Sirtuin 3 , Rats , Male , Animals , Rats, Sprague-Dawley , Sirolimus/pharmacology , Sirolimus/therapeutic use , Mitochondrial Dynamics , Diabetes Mellitus, Experimental/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Sirtuin 3/metabolism , Brain/metabolism , Brain Injuries/complications , Brain Ischemia/metabolism , TOR Serine-Threonine Kinases/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/complications , Apoptosis Regulatory Proteins/metabolism
6.
Eur J Pharmacol ; 932: 175176, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35995211

ABSTRACT

BACKGROUND: Echinacoside (ECH) is a phenylethanoid extracted from the stems of Cistanches salsa, an herb used in Chinese medicine formulations, and is effective against glioblastoma multiforme (GBM). Epithelial-mesenchymal transition (EMT) is the cornerstone of tumorigenesis and metastasis, and increases the malignant behavior of GBM cells. The S phase kinase-related protein 2 (skp2), an oncoprotein associated with EMT, is highly expressed in GBM and significantly associated with drug resistance, tumor grade and dismal prognosis. The aim of this study was to explore the inhibitory effects of ECH against GBM development and skp2-induced EMT. METHODS: CCK-8, EdU incorporation, transwell, colony formation and sphere formation assays were used to determine the effects of ECH on GBM cell viability, proliferation, migration and invasion in vitro. The in vivo anti-glioma effects of ECH were examined using a U87 xenograft model. The expression levels of skp2 protein, EMT-associated markers (vimentin and snail) and stemness markers (Nestin and sox2) were analyzed by immunofluorescence staining and western blotting experiments. RESULTS: ECH suppressed the proliferation, invasiveness and migration of GBM cells in vitro, as well as the growth of U87 xenograft in vivo. In addition, ECH downregulated the skp2 protein, EMT-related markers (vimentin and snail) and stemness markers (sox2 and Nestin). The inhibitory effects of ECH were augmented in the skp2-knockdown GBM cells, and reversed in cells with ectopic expression of skp2. CONCLUSION: ECH inhibits glioma development by suppressing skp2-induced EMT of GBM cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Glycosides , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/metabolism , Glioma/pathology , Glycosides/pharmacology , Humans , Nestin/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Sincalide/metabolism , Vimentin/metabolism
7.
BMC Neurol ; 21(1): 109, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750325

ABSTRACT

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD), a group of autoimmune neurological diseases, involve the optic nerve, spinal cord, and brain. Meningitis is rarely reported as the primary clinical manifestation of both anti-aquaporin-4 (AQP4)/ anti-myelin oligodendrocyte glycoprotein (MOG) antibody-negative NMOSD (NMOSDneg). CASE PRESENTATION: A 30-year-old man initially presented with fever, headache, and neck stiffness. Lumbar puncture revealed mixed cell reaction and decreased glucose levels. As a result, tuberculous meningitis was suspected. After 1 month, the patient developed longitudinally extensive transverse myelitis and area postrema syndrome. This was followed by the presentation of meningitis-like symptoms once again in the third attack, but his condition eventually improved after corticosteroid treatment without relapse for 2 years. However, he was readmitted to our hospital owing to symptoms of diplopia, hiccup, and numbness in the right hand. Brain magnetic resonance imaging (MRI) revealed that the area postrema still contained lesions. Spinal MRI revealed several segmental enhancements at the C4-C5, T1, and T5 levels. Anti-AQP4 and anti-MOG antibodies were persistently absent in the serum and cerebrospinal fluid (CSF). The patient was finally diagnosed with NMOSDneg. CONCLUSIONS: Meningitis could be a recurrent manifestation of NMOSDneg and requires more careful evaluation.


Subject(s)
Meningitis , Neuromyelitis Optica , Adult , Aquaporin 4/immunology , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Meningitis/diagnosis , Meningitis/etiology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuromyelitis Optica/complications , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/immunology , Spinal Cord/diagnostic imaging
8.
Ren Fail ; 40(1): 187-195, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29619875

ABSTRACT

Based on successful targeting to the αvß3 integrin of cyclic arginine-glycine-aspartic acid (cRGD), cRGD-conjugated small interfering RNA (siRNA) exhibits tumor targeting and has become a new treatment strategy for solid tumors. However, the nephrotoxicity caused by its renal retention limits its clinical application. Here, we evaluated the protective effect of Gelofusine against cRGD-conjugated siRNA-induced nephrotoxicity in mice. Male Kunming mice (six per group) were either co-injected with Gelofusine and cRGD-siRNA or injected with cRGD-siRNA alone. After administration of these treatments five times, creatinine and blood urea nitrogen (BUN) levels were determined. Hematoxylin-eosin staining (HE staining) and transferase dUTP nick end labeling (TUNEL) analysis were used to compare the difference in renal damage between the groups. Additionally, fluorescence imaging was used to observe the distribution of cRGD-siRNA in vivo. The group co-injected with Gelofusine and cRGD-siRNA displayed lower creatinine and BUN levels than the cRGD-siRNA-alone group and showed less renal damage upon HE staining and TUNEL analysis. Gelofusine decreased the retention time and accelerated the elimination of cRGD-siRNA from the organs, as observed in the fluorescence images. These data indicate that Gelofusine significantly increased the excretion of cRGD-conjugated siRNA and reduced the associated renal damage.


Subject(s)
Acute Kidney Injury/prevention & control , Kidney/drug effects , Polygeline/therapeutic use , RNA, Small Interfering/immunology , Renal Elimination/drug effects , Acute Kidney Injury/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Delivery Systems , Humans , Integrin alphaVbeta3/genetics , Kidney/metabolism , Male , Mice , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/chemistry , Peptides, Cyclic/toxicity , Polygeline/pharmacology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Tissue Distribution
9.
Drug Deliv ; 24(1): 471-481, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28181832

ABSTRACT

The epidermal growth factor receptor (EGFR) is an important anti-tumor target. The development of novel molecular-targeted anti-tumor drugs that can target the interior of tumor cells and specifically silence EGFR expression is valuable and promising. In this work, a promising anti-tumor conjugate comprising methoxy-modified EGFR siRNA and cyclic arginine-glycine-aspartic acid (cRGD) peptides, which selectively bind to αvß3 integrins, was synthesized and examined. To prepare cRGD-EGFR siRNA (cRGD-siEGFR), cRGD was covalently conjugated to the 5'-end of an siRNA sense strand using a thiol-maleimide linker. The cellular uptake and cytotoxicity of cRGD-siEGFR in vitro were tested using an αvß3-positive U87MG cell line. In vivo bio-distribution, anti-tumor activity, immunogenicity and toxicity were investigated in a nude mouse tumor model through repeated i.v. administration of cRGD-siEGFR (7 times over a 48 h interval). Analyses of in vitro data showed that cRGD-siEGFR silenced EGFR expression effectively, with high tumor targeting ability. Administration of cRGD-siEGFR to tumor-bearing nude mice led to significant inhibition of tumor growth, obvious reduction of EGFR expression and down-regulation of EGFR mRNA and protein in tumor tissue. Furthermore, serum biochemistry and pathological section evaluation did not indicate any serious toxicity of cRGD-siEGFR in vivo. cRGD-siEGFR is likely a promising candidate with high targeting ability, substantial anti-tumor effects and low toxicity in vitro and in vivo.


Subject(s)
Brain Neoplasms/therapy , ErbB Receptors/metabolism , Gene Transfer Techniques , Glioblastoma/therapy , Peptides, Cyclic/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNAi Therapeutics/methods , Animals , Apoptosis/drug effects , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Integrin alphaVbeta3/metabolism , Ligands , Mice, Inbred BALB C , Mice, Nude , RNA, Small Interfering/genetics , Time Factors , Tissue Distribution , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
Mol Neurobiol ; 54(10): 7670-7685, 2017 Dec.
Article in English | MEDLINE | ID: mdl-27844279

ABSTRACT

In recent years, long noncoding RNAs (lncRNAs) have been shown to have critical roles in a broad range of cell biological processes. However, the activities of lncRNAs during ischemic stroke remain largely unknown. In this study, we carried out a genome-wide lncRNA microarray analysis in rat brains with ischemia/reperfusion (I/R) injury. The results revealed the differential expression of a subset of lncRNAs. Through the construction of lncRNA-mRNA co-expression networks, we identified lncRNA-N1LR as a novel I/R-induced lncRNA. The functions of lncRNA-N1LR were assessed by silencing and overexpressing this lncRNA in vitro and in vivo. We found that lncRNA-N1LR enhanced cell cycle progression and cell proliferation, and inhibited apoptosis in N2a cells subjected to in vitro ischemia (oxygen-glucose deprivation/reoxygenation, OGD/R). Furthermore, we showed that lncRNA-N1LR reduced neuronal apoptosis and neural cell loss in I/R-induced mouse brains. Mechanistically, we discovered that lncRNA-N1LR promoted neuroprotection probably through the inhibition of p53 phosphorylation on serine 15 in a manner that was independent of its location-associated gene Nck1. In summary, our results indicated that lncRNA-N1LR promoted neuroprotection against ischemic stroke probably by inactivating p53. Thus, we propose that lncRNA-N1LR may serve as a potential target for therapeutic intervention following ischemic brain injury.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/prevention & control , RNA, Long Noncoding/biosynthesis , Stroke/metabolism , Stroke/prevention & control , Tumor Suppressor Protein p53/metabolism , Animals , Base Sequence , Brain Ischemia/genetics , Male , Mice , Mice, Inbred C57BL , Neuroprotection/physiology , Phosphorylation/physiology , RNA, Long Noncoding/genetics , Rats , Rats, Sprague-Dawley , Stroke/genetics , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 36(8): 1140-3, 2016 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-27578587

ABSTRACT

OBJECTIVE: To investigate the optimal starvation conditions of human umbilical vein endothelial cells (HUVECs) and establish a highly efficient and stable method for separating HUVECs. METHODS: HUVECs harvested from human umbilical cords by digestion with 0.1% collagenase II for 15 min were cultured in endothelial culture medium (ECM) containing 5% fetal bovine serum (FBS), 1% endothelial cell growth factor (ECGS) and 1% penicillin/streptomycin solution(P/S) at 37 degrees celsius; in 5% CO2. The cells were observed for cell morphology under an inverted microscope and identified with immunofluorescence assay. The purity of HUVECs was detected using flow cytometry (FCM). The cell cycles of HUVECs cultured in the presence of 0, 0.1%, 0.5%, and 1% FBS for 0, 6, 12, 18, and 24 h were analyzed with flow cytometry. RESULTS: s The purity of HUVECs harvested by digestion with 0.1% collagenase II reached 99.67%. The primary HUVECs showed a cobblestone or volute appearance in vitro. Immunocytochemistry showed that HUVECs highly expressed VIII-related antigen. Cell culture in the presence of different concentrations of FBS for 6 h resulted in 70% G0/G1 phase cells, which increased to 80%-90% at 12 h of cell culture, and further to around 95% at 18 and 24 h. CONCLUSION: Digestion with 0.1% collagenase II can obtain high-purity primary HUVECs. Culturing HUVECs in serum-free medium for 12 h can result in a high purity (over 80%) of G0/G1 phase cells.


Subject(s)
Cell Culture Techniques , Cell Cycle , Culture Media/chemistry , Human Umbilical Vein Endothelial Cells/cytology , Cells, Cultured , Flow Cytometry , Humans , Matrix Metalloproteinase 8/chemistry , Serum
SELECTION OF CITATIONS
SEARCH DETAIL
...