Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744826

ABSTRACT

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Subject(s)
Huntingtin Protein , Huntington Disease , Animals , Huntington Disease/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Mice , Humans , Disease Models, Animal , Ubiquitination , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Mutation , Protein Aggregates , Mice, Transgenic , Corpus Striatum/metabolism , Corpus Striatum/pathology , Neurons/metabolism , Neurons/pathology
2.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758800

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Subject(s)
Corpus Striatum , Huntingtin Protein , Huntington Disease , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Ubiquitination , Huntington Disease/metabolism , Huntington Disease/pathology , Huntington Disease/genetics , Animals , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Corpus Striatum/metabolism , Corpus Striatum/pathology , Mice , Humans , Disease Models, Animal , Neurons/metabolism , Neurons/pathology , Proteolysis , Primates
3.
Article in English | MEDLINE | ID: mdl-38194394

ABSTRACT

Motor imagery (MI) decoding methods are pivotal in advancing rehabilitation and motor control research. Effective extraction of spectral-spatial-temporal features is crucial for MI decoding from limited and low signal-to-noise ratio electroencephalogram (EEG) signal samples based on brain-computer interface (BCI). In this paper, we propose a lightweight Multi-Feature Attention Neural Network (M-FANet) for feature extraction and selection of multi-feature data. M-FANet employs several unique attention modules to eliminate redundant information in the frequency domain, enhance local spatial feature extraction and calibrate feature maps. We introduce a training method called Regularized Dropout (R-Drop) to address training-inference inconsistency caused by dropout and improve the model's generalization capability. We conduct extensive experiments on the BCI Competition IV 2a (BCIC-IV-2a) dataset and the 2019 World robot conference contest-BCI Robot Contest MI (WBCIC-MI) dataset. M-FANet achieves superior performance compared to state-of-the-art MI decoding methods, with 79.28% 4-class classification accuracy (kappa: 0.7259) on the BCIC-IV-2a dataset and 77.86% 3-class classification accuracy (kappa: 0.6650) on the WBCIC-MI dataset. The application of multi-feature attention modules and R-Drop in our lightweight model significantly enhances its performance, validated through comprehensive ablation experiments and visualizations.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Generalization, Psychological , Neural Networks, Computer , Signal-To-Noise Ratio , Imagination
4.
Neurobiol Dis ; 187: 106291, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37716514

ABSTRACT

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients. However, the proportion of aberrantly spliced exon1 mHTT in relation to normal mHTT exon remains to be defined. In this study, HTT exon1 production was examined in the HD knock-in (KI) pig model, which more closely recapitulates neuropathology seen in HD patient brains than HD mouse models. The study revealed that aberrant spliced HTT exon1 is also present in the brains of HD pigs, but it is expressed at a much lower level than the normally spliced HTT exon products. These findings suggest that careful consideration is needed when assessing the contribution of aberrantly spliced mHTT exon1 to HD pathogenesis, and further rigorous investigation is required.

5.
Biol Pharm Bull ; 46(9): 1277-1288, 2023.
Article in English | MEDLINE | ID: mdl-37661407

ABSTRACT

Hepatitis B virus (HBV) infection is the most common cause of death from liver disease worldwide. The use of capsid assembly modulators is considered a prominent strategy for the development of novel anti-HBV therapies. We performed a pharmacophore-based virtual screening strategy, and a benzamide scaffold hit, WAI-5, was chosen for further structural optimization. A series of novel HBV capsid assembly modulators (CAMs) were found. Compared with the lead hit, the representative compounds 11g and 11n exhibited a 10-fold increase in anti-HBV activity with 50% effective concentration (EC50) values of 1.74 and 1.90 µM, respectively.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Capsid , Pharmacophore , Hepatitis B/drug therapy , Benzamides/pharmacology
6.
Neurosci Bull ; 38(11): 1397-1408, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35608753

ABSTRACT

Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Humans , Gene Editing , Huntington Disease/genetics , Huntington Disease/therapy , CRISPR-Cas Systems/genetics
7.
Mol Oncol ; 13(6): 1419-1432, 2019 06.
Article in English | MEDLINE | ID: mdl-31033201

ABSTRACT

Pemetrexed (PEM) inhibits DNA and RNA synthesis and is currently one of the first-line agents for mesothelioma. PEM suppresses the activities of several enzymes involved in purine and pyrimidine synthesis, and elevated activity of these enzymes in tumors is often linked with resistance to PEM. The agent also stimulates AMP-activated protein kinase (AMPK) and consequently influences the mammalian target of rapamycin complex 1 (mTORC1) pathways. Nevertheless, it remains unclear whether PEM resistance is linked to the AMPK or mTORC1 pathways. Here, we established two independent PEM-resistant mesothelioma cell lines in which expression of the PEM-target enzymes was not elevated, and found that levels of phosphorylated AMPK and p70S6K and, to a lesser extent, levels of phosphorylated AKT and p53, were increased in these cells as compared with the respective parent cells. PEM stimulation also augmented phosphorylation of AMPK, p70S6K, AKT and p53 in most cases. An AMPK activator increased phosphorylation and PEM resistance in parental cells, and the inhibitor decreased the resistance of PEM-resistant cells. In contrast, inhibitors for p70S6K and AKT did not influence PEM resistance; furthermore, increased levels of endogenous p53 did not affect PEM sensitivity. These data collectively indicate that constitutive activation of AMPK is associated with PEM resistance, and that this is unconnected with elevated DNA and RNA synthesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Survival/drug effects , Mesothelioma/metabolism , Pemetrexed/pharmacology , Blotting, Western , Cell Line, Tumor , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism
8.
J Cancer ; 9(11): 2003-2011, 2018.
Article in English | MEDLINE | ID: mdl-29896285

ABSTRACT

Compelling evidence implicates that overexpression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) drives tumor progression, can serve as prognostic biomarkers or therapeutic targets for NSCLC patients. But at present, we still lack of effective drugs for bFGF. The preparation of monoclonal antibodies against bFGF or to understand its mechanism of action is urgently need. Previously, we used hybridoma technology to produce a murine anti-bFGF monoclonal antibody (E12). However, E12 carries risks of heterogeneity and immunogenicity. In the present work, we produced three humanized variants (H1L1, H2L2 and H3L3) based on E12 by substituting residues in or near the complementarity-determining region (CDR). In addition, we thoroughly explored VH/VL domain combinations to simulate full-length IgG1 antibodies using computational protein design. H3L3 was selected for further study, as it demonstrated the best humanization and strongest affinity for bFGF. Specially, humanization of H3L3's light chain and heavy chain were 100% and 98.89%, respectively. The FGF2 neutralizing effect of H3L3 were confirmed by ELISA. We also found that H3L3 can effectively suppress the growth and angiogenesis of cancer through reduce the phosphorylation of AKT and MAPK. Moreover, H3L3 dramatically reduced tumor size and micro-vessel density in nude mice. Altogether, our study demonstrates that H3L3 exerts anti-tumor effects by impeding NSCLC development.

9.
Cancer Cell Int ; 17: 120, 2017.
Article in English | MEDLINE | ID: mdl-29238267

ABSTRACT

BACKGROUND: Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism. METHODS: We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities. We screened genes enhanced in the PEM-resistant cells with a microarray analysis and confirmed the expression levels with Western blot analysis. A possible involvement of the candidates in the PEM-resistance was examined with a WST assay after knocking down the expression with si-RNA. We also analyzed a mechanism of the up-regulated expression with agents influencing AMP-activated protein kinase (AMPK) and p53. RESULTS: We found that expression of cardiac ankyrin repeat protein (CARP) was elevated in the PEM-resistant cells with a microarray and Western blot analysis. Down-regulation of CARP expression with si-RNA did not however influence the PEM resistance. Parent and PEM-resistant cells treated with PEM increased expression of CARP, AMPK, p53 and histone H2AX. The CARP up-regulation was however irrelevant to the p53 genotypes and not induced by an AMPK activator. Augmented p53 levels with nutlin-3a, an inhibitor for p53 degradation, and DNA damages were not always associated with the enhanced CARP expression. CONCLUSIONS: These data collectively suggest that up-regulated CARP expression is a potential marker for development of PEM-resistance in mesothelioma and that the PEM-mediated enhanced expression is not directly linked with immediate cellular responses to PEM.

10.
Mol Med Rep ; 16(4): 4015-4021, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28765892

ABSTRACT

Basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor 1 (FGFR1) are associated with drug resistance in lung cancer. In the present study, mouse monoclonal antibodies (mAb) against human bFGF, targeting the binding site of bFGF with FGFR1 were produced, and the antitumor activity and inhibition of metastasis was studied in Lewis lung carcinoma (LLC). A total of four hybridoma cell strains that stably secreted bFGF mAb were obtained. mAbE12 was selected as the most effective for use in the following studies, with a relative affinity constant of 5.66x108 l/mol. mAbE12 was demonstrated to inhibit cell proliferation and tumor growth in vitro and in vivo. Furthermore, mAbE12 blocked migration and metastasis of LLC cells in vitro and in vivo. This occurred due to a mAbE12­induced upregulation of E­cadherin expression through the protein kinase B­glycogen synthase kinase 3 ß­Snail pathway. These results suggested that mAbE12 may be a potential antibody for the treatment of lung cancer.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Antibody Formation , Antineoplastic Agents, Immunological/pharmacology , Fibroblast Growth Factor 2/antagonists & inhibitors , Hybridomas , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antineoplastic Agents, Immunological/chemistry , Binding Sites , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/pathology , Cell Line, Tumor , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/metabolism , Male , Mice , Models, Molecular , Molecular Conformation , Protein Binding/immunology , Xenograft Model Antitumor Assays
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(4): 501-506, 2016 Jul.
Article in Chinese | MEDLINE | ID: mdl-28591950

ABSTRACT

OBJECTIVES: To analyze the cellular function of the newly discovered DNA damage repair factor WDR70, and investigate the mutation in ovarian cancer to verify if function loss of the WDR70gene was associated with ovarian cancer. METHODS: The WDR70 gene was silenced by using siRNA technique or overexpressed its wild and mutation type by with lentivirus and plasmid in hunman cells. The subcellular localization and biochemical function of WDR70 was analyzes by indirect immunofluorescence and immunoblotting. The expression level of WDR70 and the mutations of its cDNA was checked with RT-PCR sequencing for 1 normal ovarian tissue and 16 ovarian cancer specimen. RESULTS: We found gene silencing of WDR70 or overexpression of WDR70 mutation type disrupts the phosphorylation level of homologous recombination functional protein RPA32 and the ability of recruitment at DNA damage site of recombinase RAD51, the loss of function of WDR70 also causes the elevation of the chromosome breakage in metaphase. Meanwhile, we also noticed that the existence of multiple mutations in genomic WDR70 in ovarian cancer specimen. CONCLUSIONS: Our results defined that in vitro system, WDR70 is a DNA damage repair gene, silencing of WDR70 or overexpression of WDR70 mutation type disrupts homologous recombination and chromosomal instability; the frequent mutations of WDR70 gene in genome of ovarian cancer specimens could also lead to DNA repair defeat and gene instability. Consequently WDR70 gene could represent an anti-cancer mechanism for ovarian cancer.


Subject(s)
DNA Damage , DNA Repair , Ovarian Neoplasms/genetics , Female , Humans , Mutation
12.
Int Immunopharmacol ; 28(1): 136-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26054879

ABSTRACT

Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1ß. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/biosynthesis , Gangliosides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Macrophages/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , NF-kappa B/drug effects , Toll-Like Receptor 4/drug effects , Animals , Cell Survival/drug effects , Cyclooxygenase 2/biosynthesis , Dinoprostone/biosynthesis , Macrophages/drug effects , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/biosynthesis , Phosphorylation , RAW 264.7 Cells , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...