Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 278: 126485, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38943767

ABSTRACT

Although nanozyme engineering has made tremendous progress, there is a huge gap between them and natural enzymes due to the enormous challenge of precisely adjusting the geometric and electronic structure of active sites. Considering that intentionally adjusting the metal-carrier interactions may bring the promising catalytic activity, in this work, a novel Mo atom nanocluster is successfully synthesized using nitrogen-doped Mxene (MoACs/N-MXene) nanozymes as carriers. The constructed MoACs/N-MXene displays excellent peroxidase-like catalytic activity and kinetics, outweighing its N-MXene and Mo nanoparticles (NPs)-MXene references and natural horse radish peroxidase. This work not only reports a successful example of MoACs/N-MXene nanozyme as a guide for achieving peroxidase-mimic performance of nanozymes for colorimetric glutathione sensing at 0.29 µM, but also expands the application prospects of two-dimensional MXene nanosheets by reasonably introducing metal atomic clusters and nonmetal atom doping and exploring related nanozyme properties.

2.
Talanta ; 277: 126396, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897004

ABSTRACT

Monitoring ascorbic acid (AA) levels in human body can provide valuable clues for disease diagnosis. Anchoring noble metal single atoms on perovskite substrate is a promising strategy to design electrocatalysts with outstanding electrocatalytic performance. Herein, we design an electrochemical method for detecting AA by utilizing Pt single atoms-doped CsPbBr3 nanocrystals (Pt SA/CsPbBr3 NCs) fixed on a glassy carbon electrode as an electrochemical catalyst. The uncharged 3,5,3',5'-tetramethylbenzidine (TMB) undergoes oxidation to form the positively charged oxidized TMB (oxTMB) owing to the exceptional electrochemical catalytic performance of Pt SA/CsPbBr3 NCs. Subsequently, the target AA reduces oxTMB to TMB, which is then electrocatalytically oxidized to oxTMB, producing significant oxidation current. In this way, such characteristic provides a sensitive electrochemical strategy for AA detection, achieving a concentration range of 50-fold with the detection limit of 0.0369 µM. The developed electrochemical method also successfully generates accurate detection response of AA in complex sample media (urine). Overall, this approach is expected to offer a novel way for early disease diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...