Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641696

ABSTRACT

Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.

2.
Nat Commun ; 15(1): 2450, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503743

ABSTRACT

Single-atom magnetism switching is a key technique towards the ultimate data storage density of computer hard disks and has been conceptually realized by leveraging the spin bistability of a magnetic atom under a scanning tunnelling microscope. However, it has rarely been applied to solid-state transistors, an advancement that would be highly desirable for enabling various applications. Here, we demonstrate realization of the electrically controlled Zeeman effect in Dy@C84 single-molecule transistors, thus revealing a transition in the magnetic moment from 3.8 µ B to 5.1 µ B for the ground-state GN at an electric field strength of 3 - 10 MV/cm. The consequent magnetoresistance significantly increases from 600% to 1100% at the resonant tunneling point. Density functional theory calculations further corroborate our realization of nonvolatile switching of single-atom magnetism, and the switching stability emanates from an energy barrier of 92 meV for atomic relaxation. These results highlight the potential of using endohedral metallofullerenes for high-temperature, high-stability, high-speed, and compact single-atom magnetic data storage.

3.
Nano Lett ; 23(15): 7236-7243, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37326318

ABSTRACT

Plasmonic metasurfaces have been realized for efficient light absorption, thereby leading to photothermal conversion through nonradiative decay of plasmonic modes. However, current plasmonic metasurfaces suffer from inaccessible spectral ranges, costly and time-consuming nanolithographic top-down techniques for fabrication, and difficulty of scale-up. Here, we demonstrate a new type of disordered metasurface created by densely packing plasmonic nanoclusters of ultrasmall size on a planar optical cavity. The system either operates as a broadband absorber or offers a reconfigurable absorption band right across the visible region, resulting in continuous wavelength-tunable photothermal conversion. We further present a method to measure the temperature of plasmonic metasurfaces via surface-enhanced Raman spectroscopy (SERS), by incorporating single-walled carbon nanotubes (SWCNTs) as an SERS probe within the metasurfaces. Our disordered plasmonic system, generated by a bottom-up process, offers excellent performance and compatibility with efficient photothermal conversion. Moreover, it also provides a novel platform for various hot-electron and energy-harvesting functionalities.

4.
Nanoscale ; 15(8): 3907-3918, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723161

ABSTRACT

ITO nanoparticles were generated in the gas phase with a magnetron plasma gas aggregation cluster source. Their morphologies were modified by modulating the discharging power of magnetron sputtering. The shape of the nanoparticles changed from rough spheroid formed with a higher discharging power to multi-branch formed with a lower discharging power. With a discharging power of 25 W, the ITO nanoparticles were enriched with tripod and tetrapod-shaped nanoparticles. The formation mechanism of multi-branch nanoparticles was attributed to the oriented attachment of the initially nucleated smaller nanocrystallites. Transparent conductive ITO nanoparticle films were fabricated by depositing the preformed nanoparticles with controlled thickness. The electron conduction in the film was dominated by electron tunnelling and/or hopping in the percolative channels comprised of closely spaced ITO nanoparticle assemblies and could be tuned from highly resistive nonmetal-like to highly conductive metal-like by changing the deposition thickness. The film also displayed a SPR band in the near-IR region. The conductivity of the multi-branch ITO nanoparticle film was significantly superior to that of the spheroidal nanoparticle film. For a 46 nm thick multi-branch ITO nanoparticle film, a surprisingly low specific resistance of 3.09 × 10-4 Ω cm, which is comparable to the top-class conductivity of bulk ITO films, was obtained after annealing at a mild temperature of 250 °C, with a transmittance larger than 85%.

5.
Adv Mater ; 33(23): e2007623, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33929067

ABSTRACT

Materials show various responses to incident light, owing to their unique dielectric functions. A well-known example is the distinct colors displayed by metals, providing probably the simplest method to identify gold, silver, and bronze since ancient times. With the advancement of nanotechnology, optical structures with feature sizes smaller than the optical wavelength have been routinely achieved. In this regime, the optical response is also determined by the geometry of the nanostructures, inspiring flourishing progress in plasmonics, photonic crystals, and metamaterials. Nevertheless, the nature of the materials still plays a decisive role in light-matter interactions, and this material-dependent optical response is widely accepted as a norm in nanophotonics. Here, a counterintuitive system-plasmonic nanostructures composed of different materials but exhibiting almost identical reflection-is proposed and realized. The geometric disorder embedded in the system overwhelms the contribution of the material properties to the electrodynamics. Both numerical simulations and experimental results provide concrete evidence of the insensitivity of the optical response to different plasmonic materials. The same optical response is preserved with various materials, providing great flexibility of freedom in material selection. As a result, the proposed configuration may shed light on novel applications ranging from Raman spectroscopy, photocatalysis, to nonlinear optics.

6.
ACS Appl Mater Interfaces ; 9(32): 27193-27201, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28742323

ABSTRACT

Coating a polymeric membrane for gas separation is a feasible approach to fabricate gas sensors with selectivity. In this study, poly(methyl methacrylate)-(PMMA-)membrane-coated palladium (Pd) nanoparticle (NP) films were fabricated for high-performance hydrogen (H2) gas sensing by carrying out gas-phase cluster deposition and PMMA spin coating. No changes were induced by the PMMA spin coating in the electrical transport and H2-sensing mechanisms of the Pd NP films. Measurements of H2 sensing demonstrated that the devices were capable of detecting H2 gas within the concentration range 0-10% at room temperature and showed high selectivity to H2 due to the filtration effect of the PMMA membrane layer. Despite the presence of the PMMA matrix, the lower detection limit of the sensor is less than 50 ppm. A series of PMMA membrane layers with different thicknesses were spin coated onto the surface of Pd NP films for the selective filtration of H2. It was found that the device sensing kinetics were strongly affected by the thickness of the PMMA layer, with the devices with thicker PMMA membrane layers showing a slower response to H2 gas. Three mechanisms slowing down the sensing kinetics of the devices were demonstrated to be present: diffusion of H2 gas in the PMMA matrix, nucleation and growth of the ß phase in the α phase matrix of Pd hydride, and stress relaxation at the interface between Pd NPs and the PMMA matrix. The retardation effect caused by these three mechanisms on the sensing kinetics relied on the phase region of Pd hydride during the sensing reaction. Two simple strategies, minimizing the thickness of the PMMA membrane layer and reducing the size of the Pd NPs, were proposed to compensate for retardation of the sensing response.

7.
Nano Lett ; 15(9): 5905-11, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26305696

ABSTRACT

A lateral heterojunction of topological insulator Sb2Te3/Bi2Te3 was successfully synthesized using a two-step solvothermal method. The two crystalline components were separated well by a sharp lattice-matched interface when the optimized procedure was used. Inspecting the heterojunction using high-resolution transmission electron microscopy showed that epitaxial growth occurred along the horizontal plane. The semiconducting temperature-resistance curve and crossjunction rectification were observed, which reveal a staggered-gap lateral heterojunction with a small junction voltage. Quantum correction from the weak antilocalization reveals the well-maintained transport of the topological surface state. This is appealing for a platform for spin filters and one-dimensional topological interface states.

8.
Sci Rep ; 2: 595, 2012.
Article in English | MEDLINE | ID: mdl-22916331

ABSTRACT

The universal conductance fluctuations (UCFs), one of the most important manifestations of mesoscopic electronic interference, have not yet been demonstrated for the two-dimensional surface state of topological insulators (TIs). Even if one delicately suppresses the bulk conductance by improving the quality of TI crystals, the fluctuation of the bulk conductance still keeps competitive and difficult to be separated from the desired UCFs of surface carriers. Here we report on the experimental evidence of the UCFs of the two-dimensional surface state in the bulk insulating Bi2Te2Se microflakes. The solely-B⊥-dependent UCF is achieved and its temperature dependence is investigated. The surface transport is further revealed by weak antilocalizations. Such survived UCFs of the surface states result from the limited dephasing length of the bulk carriers in ternary crystals. The electron-phonon interaction is addressed as a secondary source of the surface state dephasing based on the temperature-dependent scaling behavior.

9.
J Nanosci Nanotechnol ; 11(8): 7042-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103120

ABSTRACT

Thin Bi2Te3 flakes, with as few as 3 quintuple layers, are optically visualized on the SiO2-capped Si substrates. Their optical contrasts vary with the illumination wavelength, flake thickness and capping layers. The maximum contrast appears at the optimized light with the 570 nm wavelength. The contrast turns reversed when the flake is reduced to less than 20 quintuple layers. A calculation based on the Fresnel law describes the above observation with the constructions of the layer number-wave length-contrast three-dimensional (3D) diagram and the cap thickness-wavelength-contrast 3D diagram, applicative in the current studies of topological insulating flakes.

SELECTION OF CITATIONS
SEARCH DETAIL
...