Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Genomics ; 116(4): 110860, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776985

ABSTRACT

Walnuts exhibit a higher resistance to diseases, though they are not completely immune. This study focuses on the Pectin methylesterase (PME) gene family to investigate whether it is involved in disease resistance in walnuts. These 21 genes are distributed across 12 chromosomes, with four pairs demonstrating homology. Variations in conserved motifs and gene structures suggest diverse functions within the gene family. Phylogenetic and collinear gene pairs of the PME family indicate that the gene family has evolved in a relatively stable way. The cis-acting elements and gene ontology enrichment of these genes, underscores their potential role in bolstering walnuts' defense mechanisms. Transcriptomic analyses were conducted under conditions of Cryptosphaeria pullmanensis infestation and verified by RT-qPCR. The results showed that certain JrPME family genes were activated in response, leading to the hypothesis that some members may confer resistance to the disease.


Subject(s)
Ascomycota , Carboxylic Ester Hydrolases , Disease Resistance , Juglans , Multigene Family , Plant Diseases , Plant Proteins , Juglans/microbiology , Juglans/genetics , Ascomycota/genetics , Plant Diseases/microbiology , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
2.
Epidemiol Psychiatr Sci ; 33: e28, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764153

ABSTRACT

AIMS: Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990-2019. METHODS: We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age-period-cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors. RESULTS: During 1990-2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990-2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60-64 in women, and at the age of 75-84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5-9. Population living during 2000-2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively. CONCLUSIONS: Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000-2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.


Subject(s)
Depressive Disorder, Major , Global Burden of Disease , Global Health , Humans , Depressive Disorder, Major/epidemiology , Risk Factors , Global Burden of Disease/trends , Female , Male , Incidence , Global Health/statistics & numerical data , Adult , Prevalence , Middle Aged , Spatio-Temporal Analysis , Aged , Disability-Adjusted Life Years/trends , Young Adult , Cost of Illness , Adolescent
3.
ACS Cent Sci ; 10(2): 374-384, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435532

ABSTRACT

Highly ordered mesoporous materials with a single-crystalline structure have attracted broad interest due to their wide applications from catalysis to energy conversion/storage, but constructing them with good controllability and high yields remains a highly daunting task. Herein, we construct a new class of three-dimensionally ordered mesoporous SnO2 single crystals (3DOm-SnO2) with well-defined facets and excellent mesopore tunability. Mechanism studies demonstrate that the silanol groups on ordered silica nanospheres (3DO-SiO2) can induce the efficient heterogeneous crystallization of uniform SnO2 single crystals in its periodic voids by following the hard and soft acid and base theory, affording a much higher yield of ∼96% for 3DOm-SnO2 than that of its solid counterpart prepared in the absence of 3DO-SiO2 (∼1.5%). Benefiting from its permanent ordered mesopores and favorable electronic structure, Pd-supported 3DOm-SnO2 can efficiently catalyze the unprecedented sequential hydrogenation of 4-nitrophenylacetylene to produce 4-nitrostyrene, then 4-nitroethylbenzene, and finally 4-aminoethylbenzene. DFT calculations further reveal the favorable synergistic effect between Pd and 3DOm-SnO2 via moderate electron transfer for realizing this sequential hydrogenation reaction. Our work underlines the crucial role of silanol groups in inducing the high-yield heterogeneous crystallization of 3DOm-SnO2, shedding light on the rational design and construction of various 3DO single crystals that are of great practical significance.

4.
Angew Chem Int Ed Engl ; 63(2): e202311879, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37711068

ABSTRACT

Aldol condensation is a cost-effective and sustainable synthetic method, offering the advantages of low complexity, substrate universality, and high efficiency. Over the past decade, it has become popular for creating next-generation organic functional materials, particularly rigid-rod conjugated (semi)conductors. This review focuses on conjugated small molecules, oligomers, and polymeric (semi)conductors synthesized through aldol condensation, with emphasis on their remarkable features in advancing n-type organic field-effect transistors (OFETs), organic electrochemical transistors (OECTs), organic photovoltaics (OPVs), and organic thermoelectrics (OTEs) as well as NIR-II photothermal conversion. Coherence character, optical properties, microstructure, and chain conformation are investigated to understand material-property relationships. Future applications and challenges in this area are also discussed.

5.
Adv Mater ; 35(30): e2301894, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069133

ABSTRACT

Metal-organic frameworks (MOFs) offer versatile templates/precursors to prepare supported metal catalysts. However, the afforded catalysts usually exhibit microporous structures and unsuitable wettability, which will restrict the accessibility of active sites in liquid-phase reactions. Herein, an etching-functionalization strategy is developed for the construction of a tannic-acid-functionalized MOF with a unique hollow-wall and 3D-ordered macroporous (H-3DOM) structure. The functional MOF can be further employed as an ideal precursor for the synthesis of cobalt supported on oxygen/nitrogen-co-doped carbon composites with H-3DOM structures, and hydrophilic surface. The H-3DOM structure can improve the external surface area to maximize the exposure of active sites. Moreover, the oxygen-containing functional groups can enhance the surface wettability to guarantee the external active sites to be more electrochemically accessible in aqueous electrolyte. Benefitting from these outstanding characteristics, H-3DOM-Co/ONC exhibits high electrocatalytic activity in the oxygen reduction reaction, superior to its counterparts without the hierarchically ordered structure and surface functionalization.

6.
Environ Pollut ; 324: 121294, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36796669

ABSTRACT

Quantifying the impact of carbonyl compounds (carbonyls) on ozone (O3) photochemical formation is crucial to formulating targeted O3 mitigation strategies. To investigate the emission source of ambient carbonyls and their integrated observational constraint on the impact of O3 formation chemistry, a field campaign was conducted in an industrial city (Zibo) of the North China Plain from August to September 2020. The site-to-site variations of OH reactivity for carbonyls were in accordance with the sequence of Beijiao (BJ, urban, 4.4 s-1) > Xindian (XD, suburban, 4.2 s-1) > Tianzhen (TZ, suburban, 1.6 s-1). A 0-D box model (MCMv3.3.1) was applied to assess the O3-precursor relationship influenced by measured carbonyls. It was found that without carbonyls constraint, the O3 photochemical production of the three sites was underestimated to varying degrees, and the biases of overestimating the VOC-limited degree were also identified through a sensitivity test to NOx emission changes, which may be associated with the reactivity of carbonyls. In addition, the results of the positive matrix factorization (PMF) model indicated that the main source of aldehydes and ketones was secondary formation and background (81.6% for aldehydes, 76.8% for ketones), followed by traffic emission (11.0% for aldehydes, 14.0% for ketones). Incorporated with the box model, we found that biogenic emission contributed the most to the O3 production at the three sites, followed by traffic emission as well as industry and solvent usage. Meanwhile, the relative incremental reactivity (RIR) values of O3 precursor groups from diverse VOC emission sources featured consistencies and differences at the three sites, which further highlights the importance of the synergetic mitigation of target O3 precursors at regional and local scales. This study will help to provide targeted policy-guiding O3 control strategies for other regions.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Ozone/analysis , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Photochemical Processes , Environmental Monitoring/methods , China , Aldehydes , Ketones
7.
J Org Chem ; 87(15): 9957-9968, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35829642

ABSTRACT

A different regioselective three-component reaction of alkenes, oxygen sources, and hydroperoxides mediated by ammonium iodine to α-oxyperoxidates has been developed. Mechanistic studies demonstrated that regioselective radical addition and subsequent SN2 nucleophilic substitution were possible for the formation of products. In addition to the traditional pathway of SN2 reaction, that is, where nucleophiles attack the α-C atoms at the back side, an additional unusual transition configuration with the H2O molecule attacking the α-C atom at the front side was obtained.

8.
ACS Cent Sci ; 8(6): 718-728, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35756384

ABSTRACT

The nanoarchitecture engineering of metal-organic frameworks (MOFs) is a fascinating but intellectually challenging concept that opens up avenues for both tailoring the properties of MOFs and expanding their applications. Herein, we report the confined growth of ZIF-8 single crystals in a three-dimensionally ordered (3DO) macroporous polystyrene replica and reveal that their growth patterns, morphologies, and nanoarchitectures can be highly engineered using the concentration of the precursor. Impressively, the favorable in situ confined growth enables the successful fabrication of 3DO sphere-assembled ZIF-8 single crystals or 3DO single-crystalline ZIF-8 sphere arrays when a low- or high-concentration precursor solution, respectively, is used as the feedstock. Furthermore, our strategy can be extended to the preparation of other 3DO MOF single crystals, including ZIF-67 and HKUST-1, with similar controllable hierarchical nanoarchitectures. With the successful preparation of a series of diameter-tunable ZIF-8 single-crystalline spheres, we further unravel their interesting size-performance relationship in the Knoevenagle reaction between benzaldehyde and malononitrile, wherein the smallest spheres show the fastest first-order reaction kinetics. This study not only develops a general strategy for engineering the nanoarchitectures of MOF single crystals but also provides fundamental knowledge of the mechanism for the growth of hierarchical single crystals under confined spaces.

9.
Huan Jing Ke Xue ; 42(10): 4844-4852, 2021 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-34581127

ABSTRACT

Microbial communities in wastewater treatment plants(WWTPs) are very important for water purification in the context of public drinking water safety and environmental health. Therefore, it is necessary to explore the trends in microbial community structure and diversity in sewage treatment plants and their main environmental impact factors under different climates in China. Based on high-throughput sequencing techniques, a meta-analysis was conducted to screen the 16S rRNA genes in an open database. We analyzed the trends in microbial community structure and diversity in WWTPs under three climate types(Dwa, Cfa, and Cwa) in China. We then constructed cohesion models to examine the core microbial taxa and their interactions within the communities. We also used a piecewise structural equation model(PSEM) to examine the effects of different climate types on microbial community structure. The three climate types significantly affected the structure and diversity of the microbial communities, with patterns correlated with influent pH, mixed liquid temperature, conductivity, and nitrogen concentrations(P<0.05). Based on the PSEM analysis, the ß-diversity of the microbial communities was directly correlated with latitude, while α-diversity was indirectly correlated with latitude through conductivity and water temperature. Based on the cohesion modeling, microbial community stability was the highest under Dwa climate followed by the Cfa climate. This could be explained by a small subset of highly connected taxa capable of withstanding disturbance, indicating an important stability role. In contrast, the stability of the microbial communities under the Cwa climate was low, and no species with strong negative cohesion were observed. Overall, the structure, diversity, and stability of microbial community in WWTPs were found to be sensitive to climate, and the responsive mechanisms of α-diversity and ß-diversity with respect to latitude were distinct.


Subject(s)
Microbiota , Water Purification , China , RNA, Ribosomal, 16S , Sewage , Wastewater
10.
Angew Chem Int Ed Engl ; 60(44): 23729-23734, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34467617

ABSTRACT

Metal-organic frameworks provide versatile templates for the fabrication of various metal/carbon materials, but most of the derived composites possess only microspores, limiting the accessibility of embedded active sites. Herein, we report the construction of cobalt/nitrogen-doped carbon composites with a three-dimensional (3D) ordered macroporous and hollow-wall structure (H-3DOM-Co/NC) using a single-crystal ordered macropore (SOM)-ZIF-8@ZIF-67 as precursor. During the pyrolysis, the interconnected macroporous structure of SOM-ZIF-8@ZIF-67 is mostly preserved, whereas the pore wall achieves a solid-to-hollow transformation with Co nanoparticles formed in the hollow walls. The 3D-ordered macroporous carbon skeleton may effectively promote long-range mass transfer and the hollow wall can facilitate local accessibility of active sites. This unique structure can greatly boost its catalytic activity in the selective hydrogenation of biomass-derived furfural to cyclopentanol, much superior to its counterparts without this well-designed hierarchically porous structure.

11.
Oncol Lett ; 21(5): 426, 2021 May.
Article in English | MEDLINE | ID: mdl-33850567

ABSTRACT

Doxorubicin (DOX) is currently the preferred chemotherapeutic agent for breast cancer, and hydroxyl safflower yellow B (HSYB) has a tumor growth-inhibiting activity. The present study aimed to investigate the effects of HSYB combined with DOX on the proliferation of human breast cancer MCF-7 cells and explore the underlying mechanism. MTT and cell colony formation assays revealed that the proliferation rate of MCF-7 cells was signifiscantly decreased after HSYB and DOX treatment. Combined HSYB and DOX treatment significantly decreased the expression levels of BCL-2 in MCF-7 cells, while the expression levels of apoptosis-associated proteins, including cleaved caspase-9, BAX and cleaved caspase-3, were markedly increased. Furthermore, flow cytometry and western blot analysis demonstrated that combined HSYB and DOX treatment stimulated an increase in intracellular reactive oxygen species and promoted the release of cytochrome c, leading to apoptosis. The current data suggested that the combination of HSYB and DOX may have marked antitumor activity.

12.
PLoS One ; 16(4): e0249915, 2021.
Article in English | MEDLINE | ID: mdl-33831101

ABSTRACT

Ultraviolet (UV) filters are used in cosmetics, personal care products and packaging materials to provide sun protection for human skin and other substances. Little is known about these substances, but they continue to be released into the environment. The acute toxicity of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC to Chlorella vulgaris and Daphnia magna were analyzed in this study. The 96 h-EC50 values of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC on C. vulgaris were 183.60, 3.50 and 0.16874 mg/L, respectively. The 48 h-LC50 of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC on D. magna were 12.50, 3.74 and 0.54445 mg/L, respectively. The toxicity of a mixture of 4,4'-dihydroxybenzophenone and 4-MBC showed addictive effect on C. vulgaris, while the toxicity of mixtures of 4,4'-dihydroxybenzophenone and 2,4,4'-trihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC as well as 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC all showed antagonistic effect on C. vulgaris. The induced no-effect concentrations of 4,4'-dihydroxybenzophenone, 2,4,4'-trihydroxybenzophenone and 4-MBC by the assessment factor (AF) method were 0.0125, 0.00350 and 0.000169 mg/L, respectively.


Subject(s)
Benzophenones/toxicity , Camphor/analogs & derivatives , Chlorella vulgaris/growth & development , Daphnia/growth & development , Animals , Benzophenones/chemistry , Camphor/chemistry , Camphor/toxicity , Chlorella vulgaris/drug effects , Daphnia/drug effects , Drug Synergism , Molecular Structure , Sunscreening Agents/chemistry , Sunscreening Agents/toxicity , Toxicity Tests, Acute
13.
J Asian Nat Prod Res ; 23(4): 392-398, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32189519

ABSTRACT

One new phenolic glycoside, methyl 3,4-dihydroxyphenylacetate-4-O-[2-O-ß-D-apisoyl-6-O-(2-hydroxybenzoyl)]-ß-D-glucopyranoside (1), together with 10 known compounds (2-11), were isolated from the roots of Datura metel. The structures of these compounds were elucidated on the basis of their spectroscopic data. Furthermore, the in vitro anti-inflammatory activities of compounds 1-11 were evaluated.[Formula: see text].


Subject(s)
Datura metel , Anti-Inflammatory Agents/pharmacology , Glycosides , Molecular Structure , Plant Roots
14.
Plant Dis ; 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33026303

ABSTRACT

Oat (Avena sativa) is extensively planted as a fodder crop on the vast ranges of northern and northwestern China, and it has become an important supplementary feed for grazing livestock (Yang et al. 2010). Microdochium nivale has been reported associated with seedling blight in many temperate regions (Imathiu et al. 2010) and the damage can result in serious loss of oat production. In August 2018, a serious seedling blight of oat (cv. Baiyan 7; about 30-day-old) was observed in the field in Shandan County, Zhangye City, Gansu Province (38.22° N, 101.22° E). More than 20% of oat plants were severely affected. Symptoms included leaf chlorosis and wilt. The root systems of infected plants were black and severely rotted, often with only a small amount of fine root remaining after removal from the soil. Twenty isolations were made from blackened roots on potato dextrose agar (PDA) and five isolations (TM-1, TM-2, TM-3, TM-4 and TM-5) were further purified by a single-spore method (Choi et al. 1999). Each isolate was identical based on preliminary molecular analyses of their DNA sequences of ITS by blast in the NCBI GenBank. The representative isolate TM-2 was selected for sequencing of the RNA polymerase II subunit (RPB2) gene. The isolated colonies were grown on PDA and formed colonies of approximately 62 mm (diameter) in 5 days at 25 ± 1 °C. Colonies exhibited entire margins, the color varied from white to pale yellow, and the sparse aerial mycelium were villous-floccose and cottony. The conidia were falcate, straight to curved, apex pointed or obtuse to subacute, lacking basal differentiation, 0-3-septate, most one-septate, 2.2 to 3.1 × 12.3 to 22.6µm (av.= 2.8 ×17.6; n=50). These morphological characteristics were consistent with previous descriptions of Microdochium (Zhang et al. 2010). Molecular identity was confirmed by sequencing partial sequences of ITS gene (ITS1 and ITS4 primers) (White et al. 1990) and RPB2 regions (RPB2-5f2 and RPB2-7cr) (O'Donnell et al. 2010). Sequences were deposited in GenBank under accessions MN428647 (RPB2) and MN428646 (ITS). Blast search revealed that both of the ITS and RPB2 sequences to be 99% similar to the corresponding sequences of M. nivale(CBS 116205) accession numbers KP859008.1 and KP859117.1. For pathogenicity tests, millet seed-based inoculum of M. nivale was prepared using a modified procedure of Fang et al. (2011). Three-week-old healthy oat seedlings of cv. Baiyan 7 were transplanted into potting mix containing millet seed-based inoculum of M. nivale at a rate of 3%. Control seedlings for comparison were transplanted into pots containing uninoculated potting mix. After 10 days, all the inoculated plants had developed seedling blight symptoms and that were similar to those observed in the field; while control plants remained healthy. The pathogen was reisolated from inoculated plants and identified as M. nivale based on morphological characteristics and the molecular methods described above. To our knowledge, this is the first report of seedling blight of oat caused by M. nivale in China.

15.
Front Endocrinol (Lausanne) ; 11: 571549, 2020.
Article in English | MEDLINE | ID: mdl-33101205

ABSTRACT

Objective: The study aimed to explore the associations of rs4988300 and rs634008 in the low-density lipoprotein receptor-related protein 5 (LRP5) gene with bone mineral density (BMD), bone turnover markers (BTM), and fractures in elderly patients with osteoporosis (OP). Methods: Our study included 328 unrelated OP patients with or without fractures. Genomic DNA was extracted for genotyping. BTM levels were assessed by electrochemiluminescence (ECL). Dual-energy X-ray absorptiometry (DXA) was employed to measure BMD in the lumbar spine (LS) and proximal femur. Basic features between the OP and fracture groups were analyzed using the t-test. The Chi-square test was performed to analyze the differences in allele and genotype frequencies. The associations of single-nucleotide polymorphisms (SNPs) with BMD and BTM in the subgroups were investigated by the analysis of covariance (ANCOVA) adjusted for confounding factors. Results: In both females and males, individuals with fractures exhibited higher BTM levels and lower BMD values than those with OP (P < 0.05). The allele and genotype frequencies of rs4988300 in the subgroups were significantly different (P < 0.05). In both females and males suffering from OP, participants with rs4988300 GG or rs634008 TT presented lower procollagen I N-terminal propeptide (PINP) levels (P < 0.05). Women with OP carrying rs4988300 GG exhibited lower BMD values at FN and TH (P < 0.05). In both females and males with fractures, individuals carrying rs4988300 GG genotype or rs634008 TT genotype exhibited lower PINP levels and BMD values at FN and TH than those with other genotypes (P < 0.05). Conclusions: Rs4988300 and rs634008 polymorphisms in the LRP5 gene are associated with bone phenotypes in the elderly with OP or fractures.


Subject(s)
Bone Density/genetics , Bone Remodeling/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Osteoporosis/genetics , Osteoporotic Fractures/genetics , Aged , Aged, 80 and over , Biomarkers/metabolism , Female , Genetic Association Studies/methods , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Male , Osteoporosis/diagnostic imaging , Osteoporosis/metabolism , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/metabolism , Polymorphism, Single Nucleotide/genetics
16.
Chin Med J (Engl) ; 133(18): 2236-2238, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32769490

Subject(s)
Cicatrix , Skin , Humans , Skin/pathology
17.
J Adv Res ; 24: 363-370, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32489681

ABSTRACT

Zinc as a biomarker can be used to diagnose the early stage prostate cancer, while ZIP1 protein, a zinc transporter is significantly down-regulated in prostate cancer cells. This behavior leads to the apparent alteration of the enrichment ability for zinc between early prostate cancer tissues and healthy tissues. This difference inspires us to develop a novel Zn2+ sensor that applies to the clinic diagnosis of early prostate cancer. We designed a tetrapeptide sensor H2L (Dansyl-Gly-Pro-Trp-Gly-NH2) according to the photo-induced electron transfer principle (PET), and it performed adequately in Zn2+ imaging of prostate cell lines. Based on the assessment of Zn2+ enrichment ability, there was distinctly lower Zn2+ concentrate in prostate cancer cell lines than healthy prostate epithelial cells. Furthermore, H2L displayed high sensitivity with a detection limit as low as 49.5 nM, and high specificity for Zn2+ detection. Also the low toxicity and the superior cell permeability of H2L made the imaging of Zn2+ ions detection safe and rapid. We expect that H2L to be a powerful tool for early diagnosis of prostate cancer and a good indicator for the precise resection of cancer tissue during surgery.

18.
Int J Biol Macromol ; 157: 641-647, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-31786299

ABSTRACT

The objective of this work was to fabricate and characterize food-grade pea protein isolate (PPI) and carbohydrate polymer pullulan (PUL) nanofiber films by using green electrospinning technology. The effect of the blend ratios on the PPI/PUL solution properties (e.g. viscosity, surface tension and electrical conductivity) and morphology of the resulting electrospun nanofibers was investigated. The presence of PUL in the blends resulted in decreased apparent viscosity (P < 0.05), stable surface tension (42.09-46.26 mN/m) (P < 0.05) and lower conductivity of the solutions (P < 0.05), which were due to a better chain entanglement and decrease in the polyelectrolyte protein character, respectively, both factors were needed for uniform nanofiber (around 203 nm) formation. Rheological evaluation indicated a pseudoplastic behavior for all formulations. The Fourier transform infrared spectral changes and XRD patterns indicated that the protein and polysaccharide were well tangled in nanofibers. The results of the differential scanning calorimetry (DSC) indicate that thermal stability of the electrospun nanofiber films were improved in comparison to pure PUL. Finally, in order to expand the application range of the electrospun nanofiber films in future, thermal crosslinking method was conducted and water contact angles (WCAs) of the thermal treated nanofiber films exhibited better hydrophobic properties compared to the un-crosslinking samples.


Subject(s)
Glucans/chemistry , Nanofibers/chemistry , Pea Proteins/chemistry , Calorimetry, Differential Scanning , Glucans/isolation & purification , Hydrophobic and Hydrophilic Interactions , Pea Proteins/isolation & purification , Spectroscopy, Fourier Transform Infrared , Surface Tension
19.
Int J Biol Macromol ; 137: 224-231, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31260763

ABSTRACT

In this study, Chitosan/pullulan composite nanofiber fast dissolving oral films (FDOFs) were prepared via electrospinning technology. The ratio of chitosan/pullulan (C/P) had an influence on solution property and nanofiber morphology, with the increase of chitosan, viscosity and conductivity of solutions increased, the morphology obtained by scanning electron microscopy indicated that the diameter of nanofibers decreased initially then increased. The Fourier transform infrared spectra indicated hydrogen bond interactions between chitosan and pullulan molecules. X-ray diffraction analysis proved that electrospinning process decreased the crystallinity of materials. Thermal analysis showed that melting point, degradation temperature and glass transition temperature increased with the addition of chitosan content in the FDOF. Water solubility test proved that the FDOF can dissolve in water completely within 60 s. Finally, in order to prove its practicability in future, a model drug of aspirin was encapsulated in the FDOF successfully.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Glucans/chemistry , Nanofibers/chemistry , Nanofibers/ultrastructure , Polymers , Solubility , Spectrum Analysis , Thermogravimetry
20.
Article in English | MEDLINE | ID: mdl-30200545

ABSTRACT

Ultraviolet absorbing chemicals (UV filters) are widely used in personal care products for protecting human skin and hair from damage by UV radiation. Although these substances are released into the environment during production and consumption processes, little is known about their genotoxicity effects. Our previous studies have shown that benzophenone-type UV filters exhibited acute toxicity on three species of aquatic organisms. Mutagenesis by benzophenone (BP) and benzophenone-1(BP-1) was tested in the present study by the Salmonella typhimurium/reverse mutation assay (Ames assay). All the positive reverse mutations occurred in the absence of the S9 liver extract system for both chemicals. From BP, positive mutation effects on the TA102 strain at doses of 0.05 µg/plate and 0.5 µg/plate were detected. From BP-1, positive mutation effects on the TA97 strain at doses of 0.05 µg/plate and 0.5 µg/plate, and on the TA100 strain at a dose of 0.5 µg/plate, were detected. A mixture of BP and BP-1 exhibited mutagenicity on the TA97 and TA100 strains. For the TA97 strain, the positive mutation results were detected at 10% and 50% of the mixture. For the TA100 strain, the results were detected when the mixture was at 5% and 10%. In the mixture at 5%, the concentrations of BP and BP-1 were 3.5 µg/plate and 14 µg/plate, respectively. In the 10% mixture, the doses of BP and BP-1 were 7 µg/plate and 28 µg/plate, respectively. In the 50% mixture, the doses of BP and BP-1 were 35 µg/plate and 140 µg/plate, respectively. The mixture test results suggested that there was antagonism in mutagenicity between BP and BP-1.


Subject(s)
Benzophenones/adverse effects , Mutagenesis/drug effects , Mutagenicity Tests/methods , Mutagens/adverse effects , Salmonella typhimurium/drug effects , Sunscreening Agents/adverse effects , Ultraviolet Rays/adverse effects , Biological Assay , Environmental Monitoring/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...