Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 12(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34832751

ABSTRACT

Capacitive micromachined ultrasonic transducers (CMUTs) have been indispensable owing to their resonance characteristics in the MHz frequency range. However, the inferior pressure sensitivity and linearity of traditional CMUTs themselves cannot meet the actual demands of micro-pressure measurements. In this paper, two novel CMUTs are proposed for the first time to improve the measuring performance of micro-pressure in the range of 0-10 kPa. The core concept of the enhancement is strengthening membrane deformability by partly adjusting the CMUT framework under the combined action of electrostatic force and uniform pressure. Two modified structures of an inverted frustum cone-like cavity and slotted membrane are presented, respectively, and a finite element model (FEM) of CMUT was constructed and analyzed using COMSOL Multiphysics 5.5. The results demonstrate that the maximum displacement and pressure sensitivity are improved by 16.01% and 30.79% for the frustum cone-like cavity and 104.22% and 1861.31% for the slotted membrane, respectively. Furthermore, the results show that the width uniformity of the grooves does not influence the characteristics of the membrane, which mainly depend on the total width of the grooves, greatly enriching design flexibility. In brief, the proposed structural designs can significantly improve the micro-pressure measurement performance of the CMUT, which will accelerate the rapid breakthrough of technical barriers in the fields of aerospace, industry control, and other sensing domains.

2.
Front Physiol ; 12: 717698, 2021.
Article in English | MEDLINE | ID: mdl-34671270

ABSTRACT

The bark beetle, Scolytus schevyrewi (S. schevyrewi), is an economically important pest in China that causes serious damage to the fruit industry, particularly, in Xinjiang Province. Chemical signals play an important role in the behavior of most insects, accordingly, ecofriendly traps can be used to monitor and control the target pests in agriculture. In order to lay a foundation for future research on chemical communication mechanisms at the molecular level, we generate antennal transcriptome databases for male and female S. schevyrewi using RNA sequencing (RNA-seq) analysis. By assembling and analyzing the adult male and female antennal transcriptomes, we identified 47 odorant receptors (ORs), 22 ionotropic receptors (IRs), 22 odorant-binding proteins (OBPs), and 11 chemosensory proteins (CSPs). Furthermore, expression levels of all the candidate OBPs and CSPs were validated in different tissues of male and female adults by semiquantitative reverse transcription PCR (RT-PCR). ScosOBP2 and ScosOBP18 were highly expressed in female antennae. ScosCSP2, ScosCSP3, and ScosCSP5 were specifically expressed in the antennae of both males and females. These results provide new potential molecular targets to inform and improve future management strategies of S. schevyrewi.

3.
Front Physiol ; 11: 876, 2020.
Article in English | MEDLINE | ID: mdl-32792985

ABSTRACT

The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is a serious agricultural and urban pest that has become an invasive species in many parts of the world. Olfaction plays an indispensable role in regulating insect behaviors, such as host plant location, partners searching, and avoidance of predators. In this study, we sequenced and analyzed the antennal transcriptomes of both male and female adults of H. halys to better understand the olfactory mechanisms in this species. A total of 241 candidate chemosensory genes were identified, including 138 odorant receptors (ORs), 24 ionotropic receptors (IRs), 15 gustatory receptors (GRs), 44 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), and three sensory neuron membrane proteins (SNMPs). The results of semi-quantitative reverse transcription PCR (RT-PCR) assays showed that some HhalOBP and HhalCSP genes have tissue-specific and sex-biased expression patterns. Our results provide an insight into the molecular mechanisms of the olfactory system in H. halys and identify potential novel targets for pest control strategies.

4.
Ecotoxicol Environ Saf ; 189: 109959, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31787383

ABSTRACT

The Phytotoxicity of and mechanism underlying selenite-mediated tolerance to Cd stress in Typha angustifolia were studied hydroponically with respect to metal uptake and translocation, photosynthesis-related parameters, contents of proline and O2•-, products of lipid peroxidation, cell viability, enzymatic and non-enzymatic antioxidants, glyoxalases and phytochelatins. T. angustifolia were exposed to 25, 50 and 100 µM of Cd alone and in conjunction with 5 mg L-1 of selenite in full-strength Hoagland's nutrient solution for 30 days. Results showed that Cd contents in T. angustifolia leaves and roots increased in a dose-dependent manner and were higher in roots, but those of BAC, BCF and TF changed in a contrary pattern. Addition of selenite to Cd-containing treatments further reduced Cd levels in T. angustifolia leaves and roots, as well as BAC, BCF and TF. A diphasic effect was found in T. angustifolia for the contents of total chlorophyll, GSH, PC and GSSG, as well as activities of CAT, POD, SOD and GR, in response to Cd stress alone and in conjunction with selenite supplementation, but the same effect was not observed for Pn, Cond, Tr, Ci, Fv/Fm and ϕPSII. In contrast, exogenous selenite supplementation enhanced the contents of total chlorophyll and the non-enzymatic antioxidants, as well as activities of enzymatic antioxidants, while the values of photosynthetic fluorescence parameters were rescued. Selenite addition decreased Cd-induced cell death. Proline contents and Gly I activities in T. angustifolia leaves kept increasing in a dose-dependent manner of Cd concentrations in the growth media and selenite addition further enhanced both parameters. Addition of selenite could quench Cd-mediated generation of MDA, O2•- and MG in T. angustifolia leaves and reduce Cd-induced Gly II activity. A U-shaped GSH/GSSG ratio in T. angustifolia leaves suggests a possible trade-off between PC synthesis and GR activity since both share the same substrate GSH. Therefore, confined BAC, BCF and TF were a mechanism that confers T. angustifolia tolerance to Cd stress, and that exogenous selenite supplementation could depress Cd-induced stress in T. angustifolia by rescuing the photosynthetic fluorescence, enhancing non-enzymatic and enzymatic antioxidants that scavenge O2•- and MG, and potentiating PC synthesis that chelates Cd.


Subject(s)
Cadmium/toxicity , Selenious Acid/pharmacology , Typhaceae/drug effects , Antioxidants/metabolism , Cadmium/metabolism , Chlorophyll/metabolism , Lipid Peroxidation/drug effects , Phytochelatins/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Proline/metabolism , Typhaceae/metabolism
5.
Toxicology ; 427: 152298, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31574243

ABSTRACT

Omethoate is a broad category of organophosphorous pesticides (OPs) and has toxic effects on human health under long-term, low-dose exposure. However, the role of omethoate in cancer development remains elusive. The incidence of global head and neck squamous cell carcinomas (HNSCC) has markedly increased in recent years. Thus, we examined whether omethoate induced the proliferation of FaDu cells (a cell line of HNSCC) and if so, what the underlying mechanism was. The study revealed that omethoate induced FaDu cell growth in a dose- and time-dependent manner. Omethoate stimulated FaDu cell proliferation was mainly due to enhancing the G1 to S phase transition by flow cytometry analysis. We also found that omethoate up-regulated cyclin D1, a key gene controlling the G1-S transition. Furthermore, we showed that omethoate was capable of activating the Akt/GSK-3ß signaling pathway. Blockage of Akt by siRNA or small molecule inhibitor significantly suppressed omethoate-induced cyclin D1 expression and cell proliferation. Collectively, these findings demonstrated for the first time that omethoate could induce the pharyngeal cancer cell proliferation by activation of the Akt/GSK-3ß/cyclin D1 signaling pathway.


Subject(s)
Cyclin D1/metabolism , Dimethoate/analogs & derivatives , Glycogen Synthase Kinase 3 beta/metabolism , Pesticides/toxicity , Pharyngeal Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dimethoate/toxicity , Humans , Pharyngeal Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering/genetics , Signal Transduction/drug effects
6.
J Mol Histol ; 46(4-5): 409-20, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26115593

ABSTRACT

Dental pulp stem cells (DPSCs) were a clonogenic, highly proliferative cells capable of self-renewal and multi-lineage differentiation including chondrocytes, adipocytes, neural cells and osteoblasts, which make it an attractive choice for bone regeneration and repair of craniofacial defects. Recent studies showed that tumor necrosis factor α (TNF-α) may affect osteoclastogenesis and bone formation. However, the effect and mechanism of TNF-α on DPSCs is not clear. In this study, we found that low dose TNF-α promoted mineralization and high dose TNF-α suppressed osteogenic differentiation of DPSCs. Levels of ALP, Osteopontin, Osteocalcin, Osterix and Runx2 were up-regulated in DPSCs treated with TNF-α at low concentration, while down-regulated in DPSCs treated with TNF-α at high concentration. Blockade of Wnt/ß-catenin signaling reversed the inhibitory effect observed on osteogenic differentiation of DPSCs treated with TNF-α at high concentration. In addition, we did not detect any proliferative effect of TNF-α on DPSCs by cell cycle and cell counts analysis. In summary, our data suggested that high concentration TNF-α suppressed mineralization and mineralization-related gene expressions through the Wnt/ß-catenin signaling in DPSCs. Our findings may provide a foundation for autologous transplantation of DPSCs.


Subject(s)
Cell Differentiation/drug effects , Dental Pulp/cytology , Osteogenesis/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Wnt Signaling Pathway/drug effects , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adolescent , Adult , Biomarkers , Cell Proliferation , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Dose-Response Relationship, Drug , Gene Expression , Gene Knockdown Techniques , Humans , Osteogenesis/genetics , Stem Cells/drug effects , Young Adult , beta Catenin/genetics , beta Catenin/metabolism
7.
J Endod ; 41(7): 1066-72, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25843750

ABSTRACT

INTRODUCTION: It has been widely accepted that dental pulp stem cells (DPSCs), which are a class of self-renewal and differentiation potential of adult stem cells, play an important role in the repair procession of pulp's inflammation. We investigated whether tumor necrosis factor alpha (TNF-α) could induce the proliferation of DPSCs and clarified the potential mechanism of this proliferation. METHODS: Cell Counting Kit-8 assay (Dojindo Laboratories, Mashiki-machi, Kumamoto, Japan) and 5-ethynyl-2'-deoxyuridine-based proliferation assays were determined to investigate various concentrations or hours of TNF-α inducing a cell number change of DPSCs. Next, flow cytometry analysis was performed to investigate the main cell cycle phase process of DPSCs. Furthermore, the signaling pathway of TNF-α-induced proliferation of DPSCs was analyzed using Western blot analysis. Then, inhibitors were added to confirm the mechanism of this signaling pathway. RESULTS: TNF-α induced the proliferation of DPSCs in a dose- and time-dependent manner. Cyclin D1, which controlled the cell cycle process from the G1 to the S phase, was up-regulated by TNF-α in a time-dependent manner, whereas its overexpression alone increased DPSC proliferation. Furthermore, TNF-α was capable of inducing Akt/GSK-3ß signaling pathway activation. Blockage of phosphoinositide 3-kinase/Akt by their kinase or genetic inhibitors could significantly reduce TNF-α-induced proliferation of DPSCs. CONCLUSIONS: This study confirmed that TNF-α induced the proliferation of DPSCs by regulating the Akt/GSK-3ß/cyclin D1 signaling pathway and then provided a suitable number for the requirements of cell differentiation.


Subject(s)
Cell Proliferation/drug effects , Cyclin D1/metabolism , Dental Pulp/cytology , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Stem Cells/cytology , Tumor Necrosis Factor-alpha/pharmacology , Cell Cycle/drug effects , Dental Pulp/drug effects , Dose-Response Relationship, Drug , Humans , Signal Transduction/drug effects , Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL