Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(43): 10713-10719, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34709848

ABSTRACT

Fleeting intermediates constitute dynamically stepwise mechanisms. They have been characterized in molecular dynamics trajectories, but whether these intermediates form a free energy minimum to become entropic intermediates remains elusively defined. We developed a computational protocol known as entropic path sampling to evaluate the entropic variation of reacting species along a reaction path based on an ensemble of trajectories. Using cyclopentadiene dimerization as a model reaction, we observed an entropy maximum along the reaction path which originates from an enhanced conformational flexibility as the reacting species enter into a flat energy region. As the reacting species further approach product formation, unfavorable entropic restriction fails to offset the potential energy drop, resulting in no free energy minimum along the post-TS pathway. Our results show that cyclopentadiene dimerization involves an entropy maximum that leads to dynamic intermediates with elongated lifetimes, but the reaction does not involve entropic intermediates.

2.
J Org Chem ; 84(23): 15154-15164, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31747287

ABSTRACT

The Lewis acid-promoted generation of destabilized vinyl cations from ß-hydroxy diazo ketones leads to an energetically favorable 1,2-shift across the alkene followed by an irreversible C-H insertion to give cyclopentenone products. This reaction sequence overcomes typical challenges of counter-ion trapping and rearrangement reversibility of vinyl cations and has been used to study the migratory aptitudes of nonequivalent substituents in an uncommon C(sp2) to C(sp) vinyl cation rearrangement. The migratory aptitude trends were consistent with those observed in other cationic rearrangements; the substituent that can best stabilize a cation more readily migrates. However, density functional theory calculations show that the situation is more complex. Selectivity in the formation of one conformational isomer of the vinyl cation and facial selective migration across the alkene due to an electrostatic interaction between the vinyl cation and the adjacent carbonyl oxygen work in concert to determine which group migrates. This study provides valuable insight into predicting migration preferences when applying this methodology to the synthesis of structurally complex cyclopentenones that are differentially substituted at the α and ß positions.


Subject(s)
Vinyl Compounds/chemical synthesis , Cations/chemical synthesis , Cations/chemistry , Ketones/chemistry , Lewis Acids/chemistry , Molecular Structure , Vinyl Compounds/chemistry
3.
iScience ; 19: 749-759, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31491721

ABSTRACT

The biaryl motif is a building block in many drugs, agrochemicals, and materials, and as such it is highly desirable as a synthesis target. The state-of-the-art process for biaryl synthesis from ubiquitous carboxylic acids is decarboxylative cross-coupling involving loss of carbon dioxide (CO2). However, the scope of these methods is severely limited, mainly due to specific substitution required to promote decarboxylation. The present report implements a decarbonylative version with loss of carbon monoxide (CO) that enables to directly engage carboxylic acids in a Suzuki-Miyaura cross-coupling to produce biaryls as a general method with high cross-coupling selectivity using a well-defined Pd(0)/(II) catalytic cycle. This protocol shows a remarkably broad scope (>80 examples) and is performed in the absence of exogenous inorganic bases. In a broader context, the approach shows promise for routine applications in the synthesis of biaryls by carefully controlled decarbonylation of prevalent carboxylic acids.

4.
Chem Sci ; 10(22): 5736-5742, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31293759

ABSTRACT

Aryl carboxylic acids are among the most abundant substrates in chemical synthesis and represent a perfect example of a traceless directing group that is central to many processes in the preparation of pharmaceuticals, natural products and polymers. Herein, we describe a highly selective method for the direct step-down reduction of carboxylic acids to arenes, proceeding via well-defined Pd(0)/(ii) catalytic cycle. The method shows a remarkably broad substrate scope, enabling to direct the classical acyl reduction towards selective decarbonylation by a redox-neutral mechanism. The utility of this reaction is highlighted in the direct defunctionalization of pharmaceuticals and natural products, and further emphasized in a range of traceless processes using removable carboxylic acids under mild, redox-neutral conditions orthogonal to protodecarboxylation. Extensive DFT computations were conducted to demonstrate preferred selectivity for the reversible oxidative addition and indicated that a versatile hydrogen atom transfer (HAT) pathway is operable.

5.
Adv Mater ; 23(5): 649-53, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21274914

ABSTRACT

Ultrafast-response (20 µs) UV detectors, which are visible-blind and self-powered, in devices where an n-type ZnO nanowire partially lies on a p-type GaN film, are demonstrated. Moreover, a CdSe-nanowire red-light detector powered by a nanoscale ZnO/GaN photovoltaic cell is also demonstrated, which extends the device function to a selective multiwavelength photodetector and shows the function of an optical logical AND gate.


Subject(s)
Gallium/chemistry , Logic , Nanotechnology/methods , Nanowires/chemistry , Optical Phenomena , Ultraviolet Rays , Zinc Oxide/chemistry , Electricity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...