Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 648
Filter
1.
J Extracell Vesicles ; 13(8): e12488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104296

ABSTRACT

Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.


Subject(s)
Drug Resistance, Neoplasm , Extracellular Vesicles , Hippo Signaling Pathway , MicroRNAs , Osteonectin , Pancreatic Neoplasms , Pancreatic Stellate Cells , Protein Serine-Threonine Kinases , Tumor Microenvironment , MicroRNAs/metabolism , MicroRNAs/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Humans , Pancreatic Stellate Cells/metabolism , Animals , Protein Serine-Threonine Kinases/metabolism , Mice , Osteonectin/metabolism , Osteonectin/genetics , Extracellular Vesicles/metabolism , Cell Line, Tumor , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic , Gemcitabine , Signal Transduction , Mice, Nude
2.
J Sci Food Agric ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113436

ABSTRACT

BACKGROUND: Water and nutrients are two main determinants of wheat yield, which are vital for maintaining high crop yields. In the present study, the effects of water and phosphate fertilization on wheat yield, photosynthetic parameters, water productivity and phosphate use efficiency were investigated. Five dryland wheat cultivars from the 1940s to the 2010s that are widely cultivated in Shaanxi Province, China, were used. Experiments were conducted from 2019 to 2022 using two irrigation levels (normal rainfall and no precipitation after the reviving stage) and two phosphorus application levels (0 and 100 kg ha-1). RESULTS: Compared with old cultivars ('Mazha'), the grain yield of modern cultivars ('Changhan 58') was 89.24% higher and was closely correlated with chlorophyll index, leaf area index, photosynthetic rate and tillers. With the replacement of cultivars, the phosphorus content, water potential and phosphatase activity of wheat leaves increased. Considering water-phosphorus interactions, the water use efficiency and phosphorus use efficiency of wheat showed a significant positive correlation. CONCLUSION: Our findings indicate that modern wheat cultivars are more responsive to phosphorus. Further analysis revealed that modern varieties have evolved two phosphorus absorption strategies in response to phosphorus deficiency - namely, the formation of a phosphorus supply source, which may result in larger numbers of green organs; and an increase in phosphorus sinks, which tended to activation and transport of plant phosphorus. Our results may thus contribute to water conservation, increased yields and the development of strategies for efficient phosphorus fertilization. © 2024 Society of Chemical Industry.

3.
Virol Sin ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151705

ABSTRACT

The live attenuated hepatitis A virus vaccine H2 strain was developed by passaging a wild- type H2w isolate in cell cultures. Currently, the mechanism underlying its attenuation phenotype remain largely unknown. In this study, we generated a full-length infectious cDNA clone of the H2 strain using in-fusion techniques. The recovered H2 strain (H2ic) from the cDNA clone exhibited an efficient replication in both the hepatoma cell line Huh7.5.1 and the 2BS cell line used for vaccine production, similar to the parental H2 strain. Additionally, H2ic did not cause disease in Ifnar1-/- C57 mice, consistent with the H2 strain. To explore the cell-adaptive mutations of the H2 strain, chimeric viruses were generated by replacing its non-structural proteins with corresponding regions from H2w using the infectious cDNA clone as a genetic backbone. The chimeric viruses carrying the 3C or 3D proteins from H2w showed decreased replication in Huh7.5.1 and 2BS cell lines compared to H2ic. Other chimeric viruses containing the 2B, 2C, or 3A proteins from H2w failed to be recovered. Furthermore, there were no significant differences in disease manifestation in mice between H2ic and the recovered chimeric viruses. These results demonstrate that adaptive mutations in the 2B, 2C, and 3A proteins are essential for efficient replication of the H2 strain in cell cultures. Mutations in the 3C and 3D proteins contribute to enhanced replication in cell cultures but did not influence the attenuated phenotypes in mice. Together, this study presents the first reverse genetic system of the H2 strain and identifies viral proteins essential for adaptation to cell cultures.

4.
Environ Int ; 190: 108941, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39128374

ABSTRACT

With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed. Their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community in soil were also investigated in comparison. The results showed that the 4-epimers could be substantially transformed to their parents and degraded as a whole. The degradation rates of four selected pollutants are followed: TC > OTC > ETC > EOTC. This indicated that when TCs entered the soil, part of TCs transformed into slower-degraded 4-epimers, and these 4-epimers could also be converted back to their antibiotic parents, causing the long-term residue of TCs in soil. When added to the soil alone, TC and OTC significantly promoted the proliferation of most ARGs and MGEs, among them, trb-C, IS1247 and IS1111 were the top three genes in abundance. ETC and EOTC had little effect at the beginning. However, as the 4-epimers continuously converted into their parents after one month of cultivation, ETC and EOTC treatments showed similar promoting effect on ARGs and MGEs, indicating that the effect of ETC and EOTC on soil resistome was lagged and mainly caused by their transformed parents. Nocardioides, unclassified_Rhizobiaceae, norank_Sericytochromatia, Microlunatus, Solirubrobacter and norank_67-14 were the most frequent hosts of ARGs, Most of which belong to the phylum Actinobacteria. Due to their large transformation to TCs, slow degradation rate and potential effects on soil microbes and ARGs, the harm of TCs' 4-epimers on soil ecosystem cannot be ignored.


Subject(s)
Anti-Bacterial Agents , Soil Microbiology , Soil Pollutants , Soil , Tetracyclines , Soil Pollutants/toxicity , Tetracyclines/pharmacology , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Microbial/genetics , Oxytetracycline
5.
Br J Pharmacol ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39154373

ABSTRACT

BACKGROUND: There is increasing interest in developing FPR2 agonists (compound 43, ACT-389949 and BMS-986235) as potential pro-resolving therapeutics, with ACT-389949 and BMS-986235 having entered phase I clinical development. FPR2 activation leads to diverse downstream outputs. ACT-389949 was observed to cause rapid tachyphylaxis, while BMS-986235 and compound 43 induced cardioprotective effects in preclinical models. We aim to characterise the differences in ligand-receptor engagement and downstream signalling and trafficking bias profile. EXPERIMENTAL APPROACH: Concentration-response curves to G protein dissociation, ß-arrestin recruitment, receptor trafficking and second messenger signalling were generated using FPR2 ligands (BMS-986235, ACT-389949, compound 43 and WKYMVm), in HEK293A cells. Log(τ/KA) was obtained from the operational model for bias analysis using WKYMVm as a reference ligand. Docking of FPR2 ligands into the active FPR2 cryoEM structure (PDBID: 7T6S) was performed using ICM pro software. KEY RESULTS: Bias analysis revealed that WKYMVm and ACT-389949 shared a very similar bias profile. In comparison, BMS-986235 and compound 43 displayed approximately 5- to 50-fold bias away from ß-arrestin recruitment and trafficking pathways, while being 35- to 60-fold biased towards cAMP inhibition and pERK1/2. Molecular docking predicted key amino acid interactions at the FPR2 shared between WKYMVm and ACT-389949, but not with BMS-986235 and compound 43. CONCLUSION AND IMPLICATIONS: In vitro characterisation demonstrated that WKYMVm and ACT-389949 differ from BMS-986235 and compound 43 in their signalling and protein coupling profile. This observation may be explained by differences in the ligand-receptor interactions. In vitro characterisation provided significant insights into identifying the desired bias profile for FPR2-based pharmacotherapy.

6.
Vaccines (Basel) ; 12(8)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39203982

ABSTRACT

Yellow fever (YF), caused by the yellow fever virus (YFV), continually spreads and causes epidemics worldwide, posing a great threat to human health. The live-attenuated YF 17D vaccine (YF-17D) has been licensed for preventing YFV infection and administrated via the intramuscular (i.m.) route. In this study, we sought to determine the immunogenicity and protective efficacy of aerosolized YF-17D via the intratracheal (i.t.) route in mice. YF-17D stocks in liquids were successfully aerosolized into particles of 6 µm. Further in vitro phenotype results showed the aerosolization process did not abolish the infectivity of YF-17D. Meanwhile, a single i.t. immunization with aerosolized YF-17D induced robust humoral and cellular immune responses in A129 mice, which is comparable to that received i.p. immunization. Notably, the aerosolized YF-17D also triggered specific secretory IgA (SIgA) production in bronchoalveolar lavage. Additionally, all immunized animals survived a lethal dose of YFV challenge in mice. In conclusion, our results support further development of aerosolized YF-17D in the future.

7.
Genomics ; 116(5): 110926, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178997

ABSTRACT

During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.

8.
Sci Total Environ ; 950: 175253, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111443

ABSTRACT

In this study, the competitive adsorption and migration behaviors of arsenic (As), cadmium (Cd), and chromium (Cr) in typical Chinese soils were investigated. It was observed that Hainan, Shanxi, and Zhejiang Mengjiadai soils exhibited the highest adsorption capacities for As (563 µg/g), Cd (653 µg/g), and Cr (383 µg/g), respectively. Heavy metals (HMs) adsorption capacities were predicted by Extreme gradient boosting (XGBoost) models, and the Shapley additive explanation (SHAP) was employed to elucidate the effect of soil physicochemical properties on target values. Due to redox and complexation reaction, the primary factor affecting adsorption has changed from free state manganese (Mn) in single As system to antimony (Sb) in As/Cd and As/Cr systems. Furthermore, the maximum adsorption capacity (Qm) of As increased by 49.4 % with the addition of Cd into Heilongjiang soil. Finally, the migration process of HMs in Heilongjiang, Hebei, and Hainan soils was simulated by column experiments. With a relatively large dispersion coefficient (D = 29.630 cm2/h) and small retardation factor (Rh = 0.030), Cr penetrated fastest in Heilongjiang soil. This research demonstrates that both the types and coexistence of HMs may affect the HMs behaviors in soil.

9.
World J Oncol ; 15(4): 579-591, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993248

ABSTRACT

Background: Lymph node status is a prominent prognostic factor for intrahepatic cholangiocarcinoma (ICC). However, the prognostic value of performing lymph node dissection (LND) in patients with clinical node-negative ICC remains controversial. The aim of this study was to evaluate the clinical value of LND on long-term outcomes in this subgroup of patients. Methods: We retrospectively analyzed patients who underwent radical liver resection for clinically node-negative ICC from three tertiary hepatobiliary centers. The propensity score matching analysis at 1:1 ratio based on clinicopathological data was conducted between patients with and without LND. Recurrence-free survival (RFS) and overall survival (OS) were compared in the matched cohort. Results: Among 303 patients who underwent radical liver resection for ICC, 48 patients with clinically positive nodes were excluded, and a total of 159 clinically node-negative ICC patients were finally eligible for the study, with 102 in the LND group and 57 in the non-LND group. After propensity score matching, two well-balanced groups of 51 patients each were analyzed. No significant difference of median RFS (12.0 vs. 10.0 months, P = 0.37) and median OS (22.0 vs. 26.0 months, P = 0.47) was observed between the LND and non-LND group. Also, LND was not identified as one of the independent risks for survival. Among 51 patients who received LND, 11 patients were with positive lymph nodes (lymph node metastasis (LNM) (+)) and presented significantly worse outcomes than those with LND (-). On the other hand, postoperative adjuvant therapy was the independent risk factor for both RFS (hazard ratio (HR): 0.623, 95% confidence interval (CI): 0.393 - 0.987, P = 0.044) and OS (HR: 0.585, 95% CI: 0.359 - 0.952, P = 0.031). Furthermore, postoperative adjuvant therapy was associated with prolonged survivals of non-LND patients (P = 0.02 for RFS and P = 0.03 for OS). Conclusions: Based on the data, we found that LND did not significantly improve the prognosis of patients with clinically node-negative ICC. Postoperative adjuvant therapy was associated with prolonged survival of ICC patients, especially in non-LND individuals.

10.
Nat Commun ; 15(1): 6463, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085241

ABSTRACT

Hyperuricemia is associated with an increased risk of gout, hypertension, diabetes, and cardiovascular diseases. Most mammals maintain normal serum uric acid (SUA) via urate oxidase (Uox), an enzyme that metabolizes poorly-soluble UA to highly-soluble allantoin. In contrast, Uox became a pseudogene in humans and apes over the long course of evolution. Here we demonstrate an atavistic strategy for treating hyperuricemia based on endogenous expression of Uox in hepatocytes mediated by mRNA (mUox) loaded with an ionizable lipid nanoparticle termed iLAND. mUox@iLAND allows effective transfection and protein expression in vitro. A single dose of mUox@iLAND lowers SUA levels for several weeks in two female murine models, including a novel long-lasting model, which is also confirmed by metabolomics analysis. Together with the excellent safety profiles observed in vivo, the proposed mRNA agent demonstrates substantial potential for hyperuricemia therapy and the prevention of associated conditions.


Subject(s)
Hyperuricemia , Liposomes , RNA, Messenger , Urate Oxidase , Uric Acid , Hyperuricemia/drug therapy , Hyperuricemia/genetics , Hyperuricemia/metabolism , Animals , RNA, Messenger/metabolism , RNA, Messenger/genetics , Urate Oxidase/metabolism , Urate Oxidase/genetics , Female , Mice , Humans , Uric Acid/metabolism , Uric Acid/blood , Liposomes/chemistry , Nanoparticles/chemistry , Hepatocytes/metabolism , Disease Models, Animal , Mice, Inbred C57BL
11.
Cancer Cell Int ; 24(1): 264, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054529

ABSTRACT

Pancreatic cancer remains one of the most lethal diseases worldwide. Cancer-derived exosomes, benefiting from the protective role of the lipid membrane, exhibit remarkable stability in the circulatory system. These exosomes, released by tumor microenvironment, contain various biomolecules such as proteins, RNAs, and lipids that plays a pivotal role in mediating distant communication between the local pancreatic tumor and other organs or tissues. They facilitate the transfer of oncogenic factors to distant sites, contributing to the compromised body immune system, distant metastasis, diabetes, cachexia, and promoting a microenvironment conducive to tumor growth and metastasis in pancreatic cancer patients. Beyond their intrinsic roles, circulating exosomes in peripheral blood can be detected to facilitate accurate liquid biopsy. This approach offers a novel and promising method for the diagnosis and management of pancreatic cancer. Consequently, circulating exosomes are not only crucial mediators of systemic cell-cell communication during pancreatic cancer progression but also hold great potential as precise tools for pancreatic cancer management and treatment. Exosome-based liquid biopsy and therapy represent promising advancements in the diagnosis and treatment of pancreatic cancer. Exosomes can serve as drug delivery vehicles, enhancing the targeting and efficacy of anticancer treatments, modulating the immune system, and facilitating gene editing to suppress tumor growth. Ongoing research focuses on biomarker identification, drug delivery systems, and clinical trials to validate the safety and efficacy of exosome-based therapies, offering new possibilities for early diagnosis and precision treatment in pancreatic cancer. Leveraging the therapeutic potential of exosomes, including their ability to deliver targeted drugs and modulate immune responses, opens new avenues for innovative treatment strategies.

12.
Med ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025066

ABSTRACT

BACKGROUND: ABO1020 is a monovalent COVID-19 mRNA vaccine. Results from a phase 1 trial showed ABO1020 was safe and well tolerated, and phase 3 trials to evaluate the efficacy, immunogenicity, and safety of ABO1020 in healthy adults are urgently needed. METHODS: We conducted a multinational, randomized, placebo-controlled, double-blind, phase 3 trial among healthy adults (ClinicalTrials.gov: NCT05636319). Participants were randomly assigned (1:1) to receive either 2 doses of ABO1020 (15 µg per dose) or placebo, administered 28 days apart. The primary endpoint was the vaccine efficacy in preventing symptomatic COVID-19 cases that occurred at least 14 days post-full vaccination. The second endpoint included the neutralizing antibody titers against Omicron BA.5 and XBB and safety assessments. FINDINGS: A total of 14,138 participants were randomly assigned to receive either vaccine or placebo (7,069 participants in each group). A total of 366 symptomatic COVID-19 cases were confirmed 14 days after the second dose among 93 participants in the ABO1020 group and 273 participants in the placebo group, yielding a vaccine efficacy of 66.18% (95% confidence interval: 57.21-73.27, p < 0.0001). A single dose or two doses of ABO1020 elicited potent neutralizing antibodies against both BA.5 and XBB.1.5. The safety profile of ABO1020 was characterized by transient, mild-to-moderate fever, pain at the injection site, and headache. CONCLUSION: ABO1020 was well tolerated and conferred 66.18% protection against symptomatic COVID-19 in adults. FUNDING: National Key Research and Development Project of China, Innovation Fund for Medical Sciences from the CAMS, National Natural Science Foundation of China.

13.
J Biomed Sci ; 31(1): 60, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849802

ABSTRACT

BACKGROUND: Flavivirus is a challenge all over the world. The replication of flavivirus takes place within membranous replication compartments (RCs) derived from endoplasmic reticulum (ER). Flavivirus NS1 proteins have been proven essential for the formation of viral RCs by remodeling the ER. The glycosylation of flavivirus NS1 proteins is important for viral replication, yet the underlying mechanism remains unclear. METHODS: HeLa cells were used to visualize the ER remodeling effects induced by NS1 expression. ZIKV replicon luciferase assay was performed with BHK-21 cells. rZIKV was generated from BHK-21 cells and the plaque assay was done with Vero Cells. Liposome co-floating assay was performed with purified NS1 proteins from 293T cells. RESULTS: We found that the glycosylation of flavivirus NS1 contributes to its ER remodeling activity. Glycosylation deficiency of NS1, either through N-glycosylation sites mutations or tunicamycin treatment, compromises its ER remodeling activity and interferes with viral RCs formation. Disruption of NS1 glycosylation results in abnormal aggregation of NS1, rather than reducing its membrane-binding activity. Consequently, deficiency in NS1 glycosylation impairs virus replication. CONCLUSIONS: In summary, our results highlight the significance of NS1 glycosylation in flavivirus replication and elucidate the underlying mechanism. This provides a new strategy for combating flavivirus infections.


Subject(s)
Viral Nonstructural Proteins , Virus Replication , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Glycosylation , Humans , Animals , Viral Replication Compartments/metabolism , HeLa Cells , Chlorocebus aethiops , Flavivirus/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Vero Cells
14.
Cardiovasc Res ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879891

ABSTRACT

AIMS: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.e. hypertension-induced end-organ damage. The parallels between the murine and human hypertensive proteome were also investigated. METHODS AND RESULTS: The hypertensive response to angiotensin II (Ang II, 0.7 mg/kg/day, s.c.) was attenuated by Cmpd17b (50 mg/kg/day, i.p.). Impairments in cardiac and vascular function assessed via echocardiography were improved by Cmpd17b in hypertensive mice. This functional improvement was accompanied by reduced cardiac and aortic fibrosis and vascular calcification. Cmpd17b also attenuated Ang II-induced increased cardiac mitochondrial complex 2 respiration. Proteomic profiling of cardiac and aortic tissues and cells, using label-free nano-liquid chromatography with high-sensitivity mass spectrometry, detected and quantified ∼6000 proteins. We report hypertension-impacted protein clusters associated with dysregulation of inflammatory, mitochondrial, and calcium responses, as well as modified networks associated with cardiovascular remodelling, contractility, and structural/cytoskeletal organization. Cmpd17b attenuated hypertension-induced dysregulation of multiple proteins in mice, and of these, ∼110 proteins were identified as similarly dysregulated in humans suffering from adverse aortic remodelling and cardiac hypertrophy. CONCLUSION: We have demonstrated, for the first time, that the FPR agonist Cmpd17b powerfully limits hypertension-induced end-organ damage, consistent with proteome networks, supporting development of pro-resolution FPR-based therapeutics for treatment of systemic hypertension complications.

15.
Front Public Health ; 12: 1363764, 2024.
Article in English | MEDLINE | ID: mdl-38841669

ABSTRACT

Alleviating health inequality among different income groups has become a significant policy goal in China to promote common prosperity. Based on the data from the China Health and Retirement Longitudinal Study (CHARLS) covering the period from 2013 to 2018, this study empirically examines the impact of Integrated Medical Insurance System (URRBMI) on the health and health inequality of older adult rural residents. The following conclusions are drawn: First, URRBMI have elevated the level of medical security, reduced the frailty index of rural residents, and improved the health status of rural residents. Second, China exhibits "pro-rich" health inequality, and URRBMI exacerbates health inequality among rural residents with different incomes. This result remains robust when replacing the frailty index with different health modules. Third, the analysis of influencing mechanisms indicates that the URRBMI exacerbate inequality in the utilization of medical services among rural residents, resulting in a phenomenon of "subsidizing the rich by the poor" and intensifying health inequality. Fourth, in terms of heterogeneity, URRBMI have significantly widened health inequality among the older adult and in regions with a higher proportion of multiple-tiered medical insurance schemes. Finally, it is suggested that China consider establishing a medical financing and benefit assurance system that is related to income and age and separately construct a unified public medical insurance system for the older adult population.


Subject(s)
Health Status Disparities , Insurance, Health , Rural Population , Humans , China , Rural Population/statistics & numerical data , Insurance, Health/statistics & numerical data , Longitudinal Studies , Aged , Male , Middle Aged , Female , Insurance Benefits/statistics & numerical data , Insurance Benefits/economics , Socioeconomic Factors
16.
Front Pharmacol ; 15: 1377475, 2024.
Article in English | MEDLINE | ID: mdl-38915465

ABSTRACT

Background and purpose: The efficacy of intravenous thrombolysis (IVT) in patients with acute minor ischaemic stroke (AMIS) remains unclear. We performed a meta-analysis to compare the efficacy and safety of IVT and dual antiplatelet therapy (DAPT) in patients with AMIS. Methods: The Embase, Cochrane Library, PubMed, and Web of Science databases were searched up to 10 October, 2023. Prospective and retrospective studies comparing the clinical outcomes of IVT and DAPT were included. Odds ratios (ORs) and 95% confidence intervals (CIs) for early neurological deterioration (END), excellent and favourable functional outcomes, recurrent ischaemic stroke at 3 months, mortality at 3 months, and symptomatic intracranial haemorrhage (ICH) were pooled using a random-effects model. Results: Of the five included studies, 6,340 patients were included. In patients with AMIS, IVT was not significantly associated with excellent and favourable functional outcomes, recurrent ischaemic stroke, or all-cause mortality at 3 months compared to early DAPT. However, a higher risk of symptomatic ICH (OR, 9.31; 95% CI, 3.39-25.57) and END (OR, 2.75; 95% CI, 1.76-4.30) were observed with IVT. Conclusion: This meta-analysis indicated that IVT was not superior to DAPT in patients with AMIS, especially in those with nondisabling AIS. However, these findings should be interpreted with caution and have some limitations. Further, well-designed randomised controlled trials are warranted.

17.
Clinics (Sao Paulo) ; 79: 100394, 2024.
Article in English | MEDLINE | ID: mdl-38820696

ABSTRACT

BACKGROUND AND PURPOSE: Intravenous Thrombolysis (IVT) prior to Mechanical Thrombectomy (MT) for Acute Ischaemic Stroke (AIS) due to Large-Vessel Occlusion (LVO) remains controversial. Therefore, the authors performed a meta-analysis of the available real-world evidence focusing on the efficacy and safety of Bridging Therapy (BT) compared with direct MT in patients with AIS due to LVO. METHODS: Four databases were searched until 01 February 2023. Retrospective and prospective studies from nationwide or health organization registry databases that compared the clinical outcomes of BT and direct MT were included. Odds Ratios (ORs) and 95 % Confidence Intervals (CIs) for efficacy and safety outcomes were pooled using a random-effects model. RESULTS: Of the 12 studies, 86,695 patients were included. In patients with AIS due to LVO, BT group was associated with higher odds of achieving excellent functional outcome (modified Rankin Scale score 0-1) at 90 days (OR = 1.48, 95 % CI 1.25-1.75), favorable discharge disposition (to the home with or without services) (OR = 1.33, 95 % CI 1.29-1.38), and decreased mortality at 90 days (OR = 0.62, 95 % CI 0.56-0.70), as compared with the direct MT group. In addition, the risk of symptomatic intracranial hemorrhage did not increase significantly in the BT group. CONCLUSION: The present meta-analysis indicates that BT was associated with favorable outcomes in patients with AIS due to LVO. These findings support the current practice in a real-world setting and strengthen their validity. For patients eligible for both IVT and MT, BT remains the standard treatment until more data are available.


Subject(s)
Ischemic Stroke , Thrombectomy , Thrombolytic Therapy , Humans , Ischemic Stroke/surgery , Ischemic Stroke/therapy , Thrombectomy/methods , Treatment Outcome , Thrombolytic Therapy/methods , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/administration & dosage , Mechanical Thrombolysis/methods
18.
J Exp Bot ; 75(16): 5054-5075, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38753441

ABSTRACT

Phosphorus nutrition has been known for a long time to influence floral transition in plants, but the underlying mechanism is unclear. Arabidopsis phosphate transporter PHOSPHATE1 (PHO1) plays a critical role in phosphate translocation from roots to shoots, but whether and how it regulates floral transition is unknown. Here, we show that knockout mutation of PHO1 delays flowering under both long- and short-day conditions. The late flowering of pho1 mutants can be partially rescued by Pi supplementation in rosettes or shoot apices. Grafting assay indicates that the late flowering of pho1 mutants is a result of impaired phosphate translocation from roots to shoots. Knockout mutation of SPX1 and SPX2, two negative regulators of the phosphate starvation response, partially rescues the late flowering of pho1 mutants. PHO1 is epistatic to PHO2, a negative regulator of PHO1, in flowering time regulation. Loss of PHO1 represses the expression of some floral activators, including FT encoding florigen, and induces the expression of some floral repressors in shoots. Genetic analyses indicate that at least jasmonic acid signaling is partially responsible for the late flowering of pho1 mutants. In addition, we find that rice PHO1;2, the homolog of PHO1, plays a similar role in floral transition. These results suggest that PHO1 integrates phosphorus nutrition and flowering time, and could be used as a potential target in modulating phosphorus nutrition-mediated flowering time in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Phosphate Transport Proteins , Phosphates , Plant Roots , Plant Shoots , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phosphates/metabolism , Phosphates/deficiency , Flowers/growth & development , Flowers/genetics , Flowers/physiology , Flowers/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Shoots/physiology , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Gene Expression Regulation, Plant , Mutation , Biological Transport
19.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Article in English | MEDLINE | ID: mdl-38736654

ABSTRACT

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Subject(s)
Fingolimod Hydrochloride , Hydrogels , Neural Stem Cells , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/administration & dosage , Neural Stem Cells/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Rats , Recovery of Function/drug effects , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Disease Models, Animal , Female , Spinal Cord/drug effects
20.
Parasit Vectors ; 17(1): 189, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632598

ABSTRACT

BACKGROUND: Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS: Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS: In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS: T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.


Subject(s)
Forkhead Transcription Factors , MicroRNAs , Toxoplasma , Animals , Female , Mice , Pregnancy , 3' Untranslated Regions , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , MicroRNAs/genetics , Placenta/metabolism , Placenta/parasitology , Placenta/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Signal Transduction , Toxoplasma/pathogenicity , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL