Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 415
Filter
1.
Genome Biol ; 25(1): 171, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951917

ABSTRACT

BACKGROUND: The massive structural variations and frequent introgression highly contribute to the genetic diversity of wheat, while the huge and complex genome of polyploid wheat hinders efficient genotyping of abundant varieties towards accurate identification, management, and exploitation of germplasm resources. RESULTS: We develop a novel workflow that identifies 1240 high-quality large copy number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive varieties, with the accuracy validated by PCR assay. We then construct a digitalized genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are linked with trait-associated introgressions, such as the 1RS·1BL translocation and 2NvS translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d (Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these tagged CNVb markers promote a stable and cost-effective strategy for evaluating wheat germplasm resources with ultra-low-coverage sequencing data, competing with SNP array for applications such as evaluating new varieties, efficient management of collections in gene banks, and describing wheat germplasm resources in a digitalized manner. We also develop a user-friendly interactive platform, WheatCNVb ( http://wheat.cau.edu.cn/WheatCNVb/ ), for exploring the CNVb profiles over ever-increasing wheat accessions, and also propose a QR-code-like representation of individual digital CNVb fingerprint. This platform also allows uploading new CNVb profiles for comparison with stored varieties. CONCLUSIONS: The CNVb-based approach provides a low-cost and high-throughput genotyping strategy for enabling digitalized wheat germplasm management and modern breeding with precise and practical decision-making.


Subject(s)
DNA Copy Number Variations , Triticum , Triticum/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing , Genetic Markers , Alleles
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124753, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38963949

ABSTRACT

Acute pyelonephritis (AP) is a severe urinary tract infection (UTI) syndrome with a large population of patients worldwide. Current approaches to confirming AP are limited to urinalysis, radiological imaging methods and histological assessment. Fourier transform infrared (FTIR) microspectroscopy is a promising label-free modality that can offer information about both morphological and molecular pathologic alterations from biological tissues. Here, FTIR microspectroscopy serves to investigate renal biological histology of a rat model with AP and classify normal cortex, normal medulla and infected acute pyelonephritis tissues. The spectra were experimentally collected by FTIR with an infrared Globar source through raster scanning procedure. Unsupervised analysis methods, including integrating, clustering and principal component analysis (PCA) were performed on such spectra data to form infrared histological maps of entire kidney section. In comparison to Hematoxylin & Eosin-stained results of the adjacent tissue sections, these infrared maps were proved to enable the differentiation of the renal tissue types. The results of both integration and clustering indicated that the concentration of amide II decreases in the infected acute pyelonephritis tissues, with an increased presence of nucleic acids and lipids. By means of PCA, the infected tissue was linearly separated from normal ones by plotting confident ellipses with the score values of the first and second principal components. Moreover, supervised analysis was performed based on the supported vector machines (SVM). Normal cortex, normal medulla and infected acute pyelonephritis tissues were classified by SVM models with the best accuracy of 96.11% in testing dataset. In addition, these analytical methods were further employed on synchrotron-based FTIR spectra data and successfully form high-resolution infrared histological maps of glomerulus and necrotic cell mass. This work demonstrates that FTIR microspectroscopy will be a powerful manner to investigate AP tissue and differentiate infected tissue from normal tissue in a renal infected model system.

3.
Anal Chim Acta ; 1316: 342826, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969424

ABSTRACT

BACKGROUND: In the fields of environmental monitoring and nuclear emergency, in order to obtain the relevant information of uranyl-induced environmental pollution and nuclear accident, it is necessary to establish a rapid quantitative analytical technique for uranyl ions. As a new promising technique, surface-enhanced Raman scattering (SERS) is hopeful to achieve this goal. However, uranyl ions are easily desorbed from SERS substrates under acidic conditions, and the structures of SERS substrates will be destroyed in the strong acidic aqueous solutions. Besides, the quantitative detection ability of SERS for uranyl ions needs to be promoted. Hence, it is necessary to develop new SERS substrates for accurate quantitative detection of trace uranyl in environmental water samples, especially in acidic solutions. RESULTS: In this work, we prepared silver ions/sodium alginate supramolecular hydrogel membrane (Ag+/SA SMH membrane), and the Ag+ ions from the membrane were transformed into Ag/Ag2O complex nanoparticles under laser irradiation. The Raman signal of uranyl was strongly enhanced under the synergistic interaction of electromagnetic enhancement derived from the Ag nanoparticles and charge transfer enhancement between uranyl and Ag2O. Utilizing the peak of SA (550 cm-1) as an internal standard, a quantitative detection with a LOD of 6.7 × 10-9 mol L-1 was achieved due to a good linear relation of uranyl concentrations from 1.0 × 10-8 mol L-1 to 2 × 10-6 mol L-1. Furthermore, foreign metal ions hardly affected the SERS detection of uranyl, and the substrate could determine trace uranyl in natural water samples. Particularly, the acidity had no obvious effect on SERS signals of uranyl ions. Therefore, in addition to the detection of uranyl ions in natural water samples, the proposed strategy could also detect uranyl ions in strong acidic solutions. SIGNIFICANCE AND NOVELTY: A simple one-step method was used to prepare an Ag+/SA SMH membrane for rapid quantitative detection of uranyl ions for the first time. The proposed substrate successfully detected uranyl ions under acidic conditions by immobilizing uranyl ion in hydrogel structure. In comparison with the previous studies, a more accurate quantitative analysis for uranyl ions was achieved by using an internal standard, and the proposed strategy could determine trace uranyl in either natural water samples or strong acidic solutions.

4.
Int Immunopharmacol ; 138: 112574, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971104

ABSTRACT

BACKGROUND: Ischemic cardiomyopathy (IC) is primarily due to long-term ischemia/hypoxia of the coronary arteries, leading to impaired cardiac contractile or diastolic function. A new form of cell death induced by copper, called "cuproptosis" is related to the development and progression of multiple diseases. The cuproptosis-related gene (CuGs) plays an important role in acute myocardial infarction, while the specific mechanisms of CuGs in ischemic cardiomyopathy remain unclear. METHODS: The expressions of CuGs and their immune characteristics were analyzed with the IC datasets obtained from the Gene Expression Omnibus, namely GSE5406 and GSE57338, identifying core genes associated with IC development. By comparing RF, SVM, GLM and XGB models, the optimal machine learning model was selected. The expression of marker genes was validated based on the GSE57345, GSE48166 and GSE42955 datasets. Construct a CeRNA network based on core genes. Therapeutic chemiacals targeting core genes were acquired using the CTD database, and molecular docking was performed using Autodock vina software. By ligating the left anterior descending (LAD) coronary artery, an IC mouse model is established, and core genes were experimentally validated using Western blot (WB) and immunohistochemistry (IHC) methods. RESULTS: We identified 14 CuGs closely associated with the onset of IC. The SVM model exhibited superior discriminative power (AUC = 0.914), with core genes being DLST, ATP7B, FDX1, SLC31A1 and DLAT. Core genes were validated on the GSE42955, GSE48166 and GSE57345 datasets, showing excellent performance (AUC = 0.943, AUC = 0.800, and AUC = 0.932). The CeRNA network consists of 218 nodes and 264 lines, including 5 core diagnostic genes, 52 miRNAs, and 161 lncRNAs. Chemicals predictions indicated 8 chemicals have therapeutic effects on the core diagnostic genes, with benzo(a)pyrene molecular docking showing the highest affinity (-11.3 kcal/mol). Compared to the normal group, the IC group,which was established by LAD ligation, showed a significant decrease in LVEF as indicated by cardiac ultrasound, and increased fibrosis as shown by MASSON staining, WB results suggest increased expression of DLST and ATP7B, and decreased expression of FDX1, SLC31A1 and DLAT in the myocardial ischemic area (p < 0.05), which was also confirmed by IHC in tissue sections. CONCLUSION: In summary, this study comprehensively revealed that DLST, ATP7B, FDX1, SLC31A1 and DLAT could be identified as potential immunological biomarkers in IC, and validated through an IC mouse model, providing valuable insights for future research into the mechanisms of CuGs and its diagnostic value to IC.

6.
Arthrosc Tech ; 13(5): 102925, 2024 May.
Article in English | MEDLINE | ID: mdl-38835448

ABSTRACT

Tendon cysts of the iliopsoas muscle cause pain and snapping of the hip. These cysts are close to the femoral nerve and blood vessels, and the risk of open surgery is high, with cyst recurrence occurring frequently. We describe a method of hip arthroscopy for the orderly excision of iliopsoas cysts. During the operation, the iliopsoas tendon is identified and released, the cyst is excised, and peritendinous osteophytes are formed successively. This technique is a minimally invasive, safe, and highly effective hip arthroscopy technique that addresses both intra- and extra-articular lesions.

7.
ACS Appl Mater Interfaces ; 16(25): 32554-32565, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865698

ABSTRACT

The assembly of two-dimensional (2D) nanomaterials into a three-dimensional (3D) aerogel can effectively prevent the problem of restacking. Here, nanofiber-reinforced MXene/reduced graphene oxide (rGO) conductive aerogel is prepared via the hydrothermal reduction of GO using pyrrole and in situ composite with MXene. Combined with low-content 2D conductive nanosheets (MXene and rGO) as "brick", conductive polypyrrole as "mortar", and one-dimensional (1D) nanofiber as "rebar", a strong interfacial cross-linking of MXene and rGO nanosheets is realized through covalent and noncovalent bonds to synergistically improve its mechanical performance. Based on the prepared MXene/rGO aerogel, a high-performance piezoresistive sensor with a sensitivity of up to 20.80 kPa-1 in a wide pressure range of 15.6 kPa is obtained, and it can withstand more than 5000 cyclic compressions. Besides, the sensor shows a stable output and can be applied to monitor various human motion signals. In addition, an all-solid-state supercapacitor electrode is also fabricated, which shows a high area-specific capacitance of up to 274 mF/cm2 at a current density of 1 mA/cm2.

8.
Org Biomol Chem ; 22(26): 5385-5392, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38869462

ABSTRACT

A copper-catalyzed syn-hydrocarbonization of internal alkynes with N,N-dimethylformamide dimethylacetal and silanes has been disclosed that offers an efficient and expedient access to (E)-α,ß-unsaturated aldehydes. This highly selective process, which can be performed at gram-scale, enjoys operational simplicity, as well as syngas-free conditions.

9.
J Speech Lang Hear Res ; 67(7): 2038-2052, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38861399

ABSTRACT

PURPOSE: Previous studies have reported the success of distributional learning for adult speakers across segmental and suprasegmental categories immediately after training. On the other hand, second language (L2) perception models posit that the ease with which learners perceive a nonnative speech contrast depends on the perceptual mapping between the contrast and learners' first language (L1) categories. This study examined whether a difference in perceptual mapping patterns for different L2-Mandarin tonal contrasts might result in a difference in distributional learning effectiveness for tonal speakers and whether an interval of sleep enhanced the knowledge through consolidation. METHOD: Following a pretest-training-posttest design, 66 L1-Cantonese participants with fewer than 9 years of Mandarin training were assigned to either the bimodal or unimodal distribution conditions. The participants of each group were asked to discriminate Mandarin level-falling (T1-T4) and level-rising (T1-T2) tone pairs on novel syllables in a within-subject design. All participants were trained in the evening, tested after training, and returned after 12 hr for overnight consolidation assessment. RESULTS: A significant distributional learning effect was observed for Mandarin T1-T4, but only after sleep. No significant distributional learning effect was observed for Mandarin T1-T2, either after training or after sleep. CONCLUSIONS: The findings may imply that distributional learning is contingent on perceptual mapping patterns of the target contrasts and that sleep may play a role in the consolidation of knowledge in an implicit statistical learning paradigm. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.25970008.


Subject(s)
Learning , Multilingualism , Speech Perception , Humans , Male , Female , Young Adult , Adult , Language , Sleep/physiology , Memory Consolidation/physiology , Phonetics
10.
Genes (Basel) ; 15(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38927696

ABSTRACT

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Ipomoea batatas , Plant Proteins , Plant Roots , Plants, Genetically Modified , Ipomoea batatas/genetics , Ipomoea batatas/growth & development , Ipomoea batatas/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Promoter Regions, Genetic , Cyclopentanes/pharmacology , Cyclopentanes/metabolism
11.
China CDC Wkly ; 6(25): 597-604, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38933041

ABSTRACT

This study aims to perform a systematic review and meta-analysis on the global prevalence of cannabis use to inform drug prevention strategies, policy-making, and resource allocation. This study initially screened 177,843 studies published between January 1, 2000, and January 15, 2024, using peer-reviewed databases including Web of Science, PubMed, Scopus, Embase, and Cochrane Library. Ultimately, 595 studies were identified for data extraction, and 39 of these were selected as country-representative studies. Heterogeneity among the selected studies was assessed using the chi-squared test and I2 statistic, while sensitivity analysis was conducted to evaluate the robustness of the results. The prevalence of cannabis use varied between 0.42% and 43.90% across 33 European countries, 1.40% to 38.12% across 15 North and South American countries, 0.30% to 19.10% across 16 Asian countries, and 1.30% to 48.70% across 18 Oceania and African countries. The pooled prevalence of cannabis use was 12.0% [95% confidence interval (CI): 10.0, 14.3] in countries where cannabis is legalized, compared to 5.4% (95% CI: 4.3, 6.9) in non-legalized countries. Our findings indicate that the prevalence of cannabis use has disproportionately increased in most countries with the implementation of medical or recreational cannabis legalization policies and relevant geographic proximity. Increased efforts are needed to monitor newly cannabis-legalized countries and prevent initial use.

12.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930974

ABSTRACT

Conformations in the solid state are typically fixed during crystallization. Transference of "frozen" C=C conformations in 3,5-bis((E)-2-(pyridin-4-yl)vinyl)methylbenzene (CH3-3,5-bpeb) by photodimerization selectively yielded cyclobutane and dicyclobutane isomers, one of which (Isomer 2) exhibited excellent in vitro anti-cancer activity towards T-24, 7402, MGC803, HepG-2, and HeLa cells.


Subject(s)
Antineoplastic Agents , Cyclobutanes , Molecular Conformation , Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Cyclobutanes/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Stereoisomerism , Cell Line, Tumor , HeLa Cells , Hep G2 Cells , Isomerism
13.
J Colloid Interface Sci ; 672: 161-169, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838625

ABSTRACT

Intelligent shape memory polymer can be potentially used in manufacturing implantable devices that enables a benign variation of implant dimensions with the external stimuli, thus effectively lowering insertion forces and evading associated risks. However, in surgical implantation, biomaterials-associated infection has imposed a huge burden to healthcare system that urgently requires an efficacious replacement of antibiotic usages. Preventing the initial attachment and harvesting a biocidal function upon native surfaces may be deemed as a preferable strategy to tackle the issues of bacterial infection. Herein, a functionalized polylactic acid (PLA) composite membrane assembled with graphene (GE, a widely used photothermal agent) was fabricated through a blending process and then polydimethylsiloxane utilized as binders to pack hydrophobic SiO2 tightly onto polymer surface (denoted as PLA-GE/SiO2). Such an active platform exhibited a moderate shape-memory performance upon near-infrared (NIR) light stimulation, which was feasible for programmed deformation and shape recovery. Particularly stirring was that PLA-GE/SiO2 exerted a pronounced bacteria-killing effect under NIR illumination, 99.9 % of E. coli and 99.8 % of S. aureus were effectively eradicated in a lean period of 5 min. Furthermore, the obtained composite membrane manifested excellent antiadhesive properties, resulting in a bacteria-repelling efficacy of up to 99 % for both E. coli and S. aureus species. These findings demonstrated the potential value of PLA-GE/SiO2 as a shape-restorable platform in "kill&repel" integration strategy, further expanding its applications for clinical anti-infective treatment.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Graphite , Microbial Sensitivity Tests , Polyesters , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Polyesters/chemistry , Polyesters/pharmacology , Graphite/chemistry , Graphite/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Surface Properties , Membranes, Artificial , Particle Size , Bacterial Adhesion/drug effects , Polymers/chemistry , Polymers/pharmacology , Infrared Rays , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology
14.
Int J Biol Macromol ; 273(Pt 1): 133026, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852722

ABSTRACT

A novel glycoside hydrolase (GH) family 16 multi-domain ß-1,3-1,4-glucanase (FsGlc16A) from Fibrobacter sp. UWP2 was identified, heterogeneously expressed, and its enzymatic properties, protein structure and application potential were characterized. Enzymological characterization showed that FsGlc16A performed the optimal catalytic activity at pH 4.5 and 50 °C with a specific activity of 3263 U/mg. FsGlc16A exhibited the substrate specificity towards oat ß-glucan, barley ß-glucan and lichenan, and in addition, it hydrolyzed oat ß-glucan and lichenan into different ß-glucooligosaccharides with polymerization degrees of 3-4, which further illustrated that it belonged to the endo-type ß-1,3-1,4-glucanase. FsGlc16A was classified in subfamily25 of GH16. A 'PXSSSS' repeats domain was identified at the C-terminus of FsGlc16A, which was distinct from the typical GH family 16 ß-1,3-1,4-glucanases. Removing the 'PXSSSS' repeats domain affected the binding of the substrate to FsGlc16A and reduced the enzyme activity. FsGlc16A displayed good potential for the applications, which hydrolyzed oat bran into ß-glucooligosaccharides, and reduced filtration time (18.89 %) and viscosity (3.64 %) in the saccharification process. This study investigated the enzymatic properties and domain function of FsGlc16A, providing new ideas and insights into the study of ß-1,3-1,4-glucanase.


Subject(s)
Glucans , Substrate Specificity , Hydrolysis , Glucans/chemistry , Glucans/metabolism , Hydrogen-Ion Concentration , Amino Acid Sequence , Temperature , Protein Domains , beta-Glucans/metabolism , beta-Glucans/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Kinetics , Endo-1,3(4)-beta-Glucanase/chemistry , Endo-1,3(4)-beta-Glucanase/metabolism , Endo-1,3(4)-beta-Glucanase/genetics , Cloning, Molecular , Phylogeny , Enzyme Stability
15.
Front Immunol ; 15: 1359380, 2024.
Article in English | MEDLINE | ID: mdl-38881892

ABSTRACT

Little studies evaluated the effectiveness of booster vaccination of inactivated COVID-19 vaccines against being infected (susceptibility), infecting others (infectiousness), and spreading the disease from one to another (transmission). Therefore, we conducted a retrospective cohort study to evaluate the effectiveness of booster vaccination of inactivated COVID-19 vaccines against susceptibility, infectiousness, and transmission in Shenzhen during an Omicron BA.2 outbreak period from 1 February to 21 April 2022. The eligible individuals were classified as four sub-cohorts according to the inactivated COVID-19 vaccination status of both the close contacts and their index cases: group 2-2, fully vaccinated close contacts seeded by fully vaccinated index cases (reference group); group 2-3, booster-vaccinated close contacts seeded by fully vaccinated index cases; group 3-2, fully vaccinated close contacts seeded by booster-vaccinated index cases; and group 3-3, booster-vaccinated close contacts seeded by booster-vaccinated index cases. Univariate and multivariate logistic regression analyses were applied to estimate the effectiveness of booster vaccination. The sample sizes of groups 2-2, 2-3, 3-2, and 3-3 were 846, 1,115, 1,210, and 2,417, respectively. We found that booster vaccination had an effectiveness against infectiousness of 44.9% (95% CI: 19.7%, 62.2%) for the adults ≥ 18 years, 62.2% (95% CI: 32.0%, 78.9%) for the female close contacts, and 60.8% (95% CI: 38.5%, 75.1%) for the non-household close contacts. Moreover, booster vaccination had an effectiveness against transmission of 29.0% (95% CI: 3.2%, 47.9%) for the adults ≥ 18 years, 38.9% (95% CI: 3.3%, 61.3%) for the female close contacts, and 45.8% (95% CI: 22.1%, 62.3%) for the non-household close contacts. However, booster vaccination against susceptibility did not provide any protective effect. In summary, this study confirm that booster vaccination of the inactivated COVID-19 vaccines provides low level of protection and moderate level of protection against Omicron BA.2 transmission and infectiousness, respectively. However, booster vaccination does not provide any protection against Omicron BA.2 susceptibility.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Vaccines, Inactivated , Humans , COVID-19/prevention & control , COVID-19/transmission , COVID-19/immunology , COVID-19/epidemiology , COVID-19/virology , Female , Retrospective Studies , SARS-CoV-2/immunology , Male , China/epidemiology , Adult , COVID-19 Vaccines/immunology , Middle Aged , Vaccines, Inactivated/immunology , Young Adult , Aged , Disease Susceptibility , Adolescent , Vaccine Efficacy , Vaccination
16.
Talanta ; 277: 126407, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38878512

ABSTRACT

Uranium is an essential nuclear material in civilian and military areas; however, its extensive application raises concerns about the potential safety issues in the fields of environmental protection and nuclear industry. In this study, we developed an Ag/Ag2O-COF (covalent-organic framework) composite SERS substrate to detect uranyl ions (UO22+) in environmental aqueous solutions. Herein, the strong SERS effect of uranyl adsorbed in Ag/Ag2O composite and the high adsorption efficiency of COF TpPa-1 were combined to realize the trace detection of uranyl ions. This method displayed a linear range of 10-8 mol L-1 to 10-6 mol L-1 with the detection limit of 8.9 × 10-10 mol L-1 for uranyl ions. Furthermore, common metal cations and oxo-ions hardly affected the SERS detection of uranyl, which is helpful for the trace analysis of uranyl in natural water samples. Although the proposed strategy is deployed for uranyl detection, the reusable and high-efficiency system may be expanded to trace detection of other substance with Raman activity.

17.
Int Immunopharmacol ; 134: 112237, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744170

ABSTRACT

Regulatory T (Treg) cells are indispensable in maintaining the immune homeostasis and preventing autoimmune diseases. Regulatory T (Treg) cells include thymus derived Treg cells (tTregs) and peripherally induced Treg cells (iTreg), which are differentiated from antigen stimulated CD4+ naïve T cells in presence of TGFß. tTregs are quite stable, and more immune suppressive, while iTreg cells are less stable, and are prone to differentiate into inflammatory T cells. Therefore, identification of small molecules that could promote the differentiation of iTreg cells is an attractive strategy for autoimmune diseases. Inhibition of AKT/mTOR pathway promotes their differentiation. Whether inhibition of Lck/Fyn kinase activity (upstream of AKT/mTOR pathway) can be used to promote the differentiation of iTreg cells has not been determined. Here, we showed that Srci1, a small molecular inhibitor of Lck/Fyn, promoted the differentiation of FOXP3+ iTreg cells. Srci1 treatment resulted in inhibition of phosphorylation of key components of AKT/mTOR pathway, including mTOR, p70 S6K, 4EBP1, and promoted the expression of Foxp3 and its target genes, thereby promoted differentiation of in vitro iTreg cells. Srci1 treated iTreg cells showed more similar gene expression profile to that of tTreg cells. Our results thus suggest that inhibition of Lck/Fyn kinase activity can promote the differentiation of iTreg cells, and may have implication in autoimmune diseases.


Subject(s)
Cell Differentiation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Proto-Oncogene Proteins c-akt , Signal Transduction , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , TOR Serine-Threonine Kinases/metabolism , Cell Differentiation/drug effects , Animals , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Forkhead Transcription Factors/metabolism , Cells, Cultured , Mice, Inbred C57BL , Humans
18.
Brain Res Bull ; 213: 110984, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806119

ABSTRACT

This study introduces the Divergent Selective Focused Multi-heads Self-Attention Network (DSFMANet), an innovative deep learning model devised to automatically predict Hamilton Depression Rating Scale-17 (HAMD-17) scores in patients with depression. This model introduces a multi-branch structure for sub-bands and artificially configures attention focus factors on various branches, resulting in distinct attention distributions for different sub-bands. Experimental results demonstrate that when DSFMANet processes sub-band data, its performance surpasses current benchmarks in key metrics such as mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). This success is particularly evident in terms of MSE and MAE, where the performance of sub-band data is significantly superior, highlighting the model's potential in accurately predicting HAMD-17 scores. Concurrently, the experiment also compared the model's performance with sub-band and full-band data, affirming the superiority of the selective focus attention mechanism in electroencephalography (EEG) signal processing. DSFMANet, when utilizing sub-band data, exhibits higher data processing efficiency and reduced model complexity. The findings of this study underscore the significance of employing deep learning models based on sub-band analysis in depression diagnosis. The DSFMANet model not only effectively enhances the accuracy of depression diagnosis but also offers valuable research directions for similar applications in the future. This deep learning-based automated approach can effectively ascertain the HAMD-17 scores of patients with depression, thus offering more accurate and reliable support for clinical decision-making.


Subject(s)
Deep Learning , Electroencephalography , Humans , Electroencephalography/methods , Depression/diagnosis , Attention/physiology , Female , Male , Adult , Psychiatric Status Rating Scales/standards
19.
Sci Total Environ ; 933: 173113, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735319

ABSTRACT

With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/ß-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.


Subject(s)
Heart , Triazoles , Water Pollutants, Chemical , Zebrafish , Animals , Male , Cardiotoxicity , Fungicides, Industrial/toxicity , Heart/drug effects , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Triazoles/toxicity , Up-Regulation , Water Pollutants, Chemical/toxicity
20.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805014

ABSTRACT

Phenotypic plasticity is a rising cancer hallmark, and lung adeno-to-squamous transition (AST) triggered by LKB1 inactivation is significantly associated with drug resistance. Mechanistic insights into AST are urgently needed to identify therapeutic vulnerability in LKB1-deficient lung cancer. Here, we find that ten-eleven translocation (TET)-mediated DNA demethylation is elevated during AST in KrasLSL-G12D/+; Lkb1L/L (KL) mice, and knockout of individual Tet genes reveals that Tet2 is required for squamous transition. TET2 promotes neutrophil infiltration through STAT3-mediated CXCL5 expression. Targeting the STAT3-CXCL5 nexus effectively inhibits squamous transition through reducing neutrophil infiltration. Interestingly, tumor-infiltrating neutrophils are laden with triglycerides and can transfer the lipid to tumor cells to promote cell proliferation and squamous transition. Pharmacological inhibition of macropinocytosis dramatically inhibits neutrophil-to-cancer cell lipid transfer and blocks squamous transition. These data uncover an epigenetic mechanism orchestrating phenotypic plasticity through regulating immune microenvironment and metabolic communication, and identify therapeutic strategies to inhibit AST.


Subject(s)
Chemokine CXCL5 , DNA-Binding Proteins , Dioxygenases , Lung Neoplasms , Neutrophils , Proto-Oncogene Proteins , STAT3 Transcription Factor , Animals , Neutrophils/metabolism , STAT3 Transcription Factor/metabolism , Mice , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Humans , Dioxygenases/metabolism , Pinocytosis , Cell Line, Tumor , Neutrophil Infiltration , Mice, Knockout , Mice, Inbred C57BL , Lipid Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...