Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Front Cell Neurosci ; 17: 1257347, 2023.
Article in English | MEDLINE | ID: mdl-38026694

ABSTRACT

The Drosophila larval neuromuscular junction (NMJ) is a well-known model system and is often used to study synapse development. Here, we show synaptic degeneration at NMJ boutons, primarily based on transmission electron microscopy (TEM) studies. When degeneration starts, the subsynaptic reticulum (SSR) swells, retracts and folds inward, and the residual SSR then degenerates into a disordered, thin or linear membrane. The axon terminal begins to degenerate from the central region, and the T-bar detaches from the presynaptic membrane with clustered synaptic vesicles to accelerate large-scale degeneration. There are two degeneration modes for clear synaptic vesicles. In the first mode, synaptic vesicles without actin filaments degenerate on the membrane with ultrafine spots and collapse and disperse to form an irregular profile with dark ultrafine particles. In the second mode, clear synaptic vesicles with actin filaments degenerate into dense synaptic vesicles, form irregular dark clumps without a membrane, and collapse and disperse to form an irregular profile with dark ultrafine particles. Last, all residual membranes in NMJ boutons degenerate into a linear shape, and all the residual elements in axon terminals degenerate and eventually form a cluster of dark ultrafine particles. Swelling and retraction of the SSR occurs prior to degradation of the axon terminal, which degenerates faster and with more intensity than the SSR. NMJ bouton degeneration occurs under normal physiological conditions but is accelerated in Drosophila neurexin (dnrx) dnrx273, Drosophila neuroligin (dnlg) dnlg1 and dnlg4 mutants and dnrx83;dnlg3 and dnlg2;dnlg3 double mutants, which suggests that both neurexin and neuroligins play a vital role in preventing synaptic degeneration.

2.
Yonsei Medical Journal ; : 953-960, 2011.
Article in English | WPRIM (Western Pacific) | ID: wpr-30296

ABSTRACT

PURPOSE: Polymorphisms of several candidate genes have been studied and associated with the development of chronic obstructive pulmonary disease (COPD). One such candidate is the SERPINE2 (Serpin peptidase inhibitor, clade E member 2) gene. MATERIALS AND METHODS: To assess whether the SERPINE2 gene is associated with COPD in a Chinese Han population. Samples were collected from a Chinese Han population and analyzed for the association of single nucleotide polymor phisms (SNPs) or haplotypes of SERPINE2 gene with COPD in a case-control study. Three SNPs including rs840088 G/A in intron 1, rs1438831 A/G in 5' upstream sequence and rs3795879 G/A in intron 3 were detected using the polymerase chain reaction (PCR)-based restriction fragment length polymorphism technique in 409 COPD subjects and 411 controls. Genotyping of the SREPINE2 polymorphisms at positions rs840088, rs1438831and rs3795879 was performed. RESULTS: We found that none of the rs840088G/A, rs1438831G/A and rs3795879 G/A polymorphisms were associated with the disease. The p-values were 0.630, 0.208 and 0.398 respectively. CONCLUSION: Our data suggested that there was no significant association between SERPINE2 polymorphism and COPD susceptibility in the Chinese Han population.


Subject(s)
Female , Humans , Male , Middle Aged , Asian People , Case-Control Studies , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Polymorphism, Restriction Fragment Length/genetics , Polymorphism, Single Nucleotide/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Serpin E2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...